Edexcel C34 2018 October — Question 9

Exam BoardEdexcel
ModuleC34 (Core Mathematics 3 & 4)
Year2018
SessionOctober
TopicDifferentiating Transcendental Functions

9. A rare species of mammal is being studied. The population \(P\), \(t\) years after the study started, is modelled by the formula $$P = \frac { 900 \mathrm { e } ^ { \frac { 1 } { 4 } t } } { 3 \mathrm { e } ^ { \frac { 1 } { 4 } t } - 1 } , \quad t \in \mathbb { R } , \quad t \geqslant 0$$ Using the model,
  1. calculate the number of mammals at the start of the study,
  2. calculate the exact value of \(t\) when \(P = 315\) Give your answer in the form \(a \ln k\), where \(a\) and \(k\) are integers to be determined.
    1. Find \(\frac { \mathrm { d } P } { \mathrm {~d} t }\)
    2. Hence find the value of \(\frac { \mathrm { d } P } { \mathrm {~d} t }\) when \(t = 8\), giving your answer to 2 decimal places.