Edexcel C34 2018 October — Question 11

Exam BoardEdexcel
ModuleC34 (Core Mathematics 3 & 4)
Year2018
SessionOctober
TopicVectors 3D & Lines

11. Relative to a fixed origin \(O\), the line \(l _ { 1 }\) is given by the equation $$l _ { 1 } : \quad \mathbf { r } = \left( \begin{array} { r } 2
3
- 1 \end{array} \right) + \lambda \left( \begin{array} { r } - 1
4
3 \end{array} \right)$$ where \(\lambda\) is a scalar parameter. The line \(l _ { 2 }\) passes through the origin and is parallel to \(l _ { 1 }\)
  1. Find a vector equation for \(l _ { 2 }\) The point \(A\) and the point \(B\) both lie on \(l _ { 1 }\) with parameters \(\lambda = 0\) and \(\lambda = 3\) respectively.
    Write down
    1. the coordinates of \(A\),
    2. the coordinates of \(B\).
  2. Find the size of the acute angle between \(O A\) and \(l _ { 1 }\) Give your answer in degrees to one decimal place. The point \(D\) lies on \(l _ { 2 }\) such that \(O A B D\) is a parallelogram.
  3. Find the area of \(O A B D\), giving your answer to the nearest whole number.