Edexcel C34 2017 October — Question 12

Exam BoardEdexcel
ModuleC34 (Core Mathematics 3 & 4)
Year2017
SessionOctober
TopicVectors 3D & Lines

  1. Relative to a fixed origin \(O\), the lines \(l _ { 1 }\) and \(l _ { 2 }\) are given by the equations
$$l _ { 1 } : \mathbf { r } = \left( \begin{array} { l } 2
0
7 \end{array} \right) + \lambda \left( \begin{array} { r } 2
- 2
1 \end{array} \right) \quad l _ { 2 } : \mathbf { r } = \left( \begin{array} { l } 2
0
7 \end{array} \right) + \mu \left( \begin{array} { l } 8
4
1 \end{array} \right)$$ where \(\lambda\) and \(\mu\) are scalar parameters.
The lines \(l _ { 1 }\) and \(l _ { 2 }\) intersect at the point \(A\).
  1. Write down the coordinates of \(A\). Given that the acute angle between \(l _ { 1 }\) and \(l _ { 2 }\) is \(\theta\),
  2. show that \(\sin \theta = k \sqrt { 2 }\), where \(k\) is a rational number to be found. The point \(B\) lies on \(l _ { 1 }\) where \(\lambda = 4\)
    The point \(C\) lies on \(l _ { 2 }\) such that \(A C = 2 A B\).
  3. Find the exact area of triangle \(A B C\).
  4. Find the coordinates of the two possible positions of \(C\).