Questions — Edexcel FP2 (291 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel FP2 2021 June Q5
  1. The point \(P\) in the complex plane represents a complex number \(z\) such that
$$| z + 9 | = 4 | z - 12 i |$$ Given that, as \(z\) varies, the locus of \(P\) is a circle,
  1. determine the centre and radius of this circle.
  2. Shade on an Argand diagram the region defined by the set $$\{ z \in \mathbb { C } : | z + 9 | < 4 | z - 12 i | \} \cap \left\{ z \in \mathbb { C } : - \frac { \pi } { 4 } < \arg \left( z - \frac { 3 + 44 i } { 5 } \right) < \frac { \pi } { 4 } \right\}$$
Edexcel FP2 2021 June Q6
  1. A recurrence system is defined by
$$\begin{aligned} u _ { n + 2 } & = 9 ( n + 1 ) ^ { 2 } u _ { n } - 3 u _ { n + 1 } \quad n \geqslant 1
u _ { 1 } & = - 3 , u _ { 2 } = 18 \end{aligned}$$ Prove by induction that, for \(n \in \mathbb { N }\), $$u _ { n } = ( - 3 ) ^ { n } n !$$
Edexcel FP2 2021 June Q7
  1. In this question you must show all stages of your working.
You must not use the integration facility on your calculator. $$I _ { n } = \int t ^ { n } \sqrt { 4 + 5 t ^ { 2 } } \mathrm {~d} t \quad n \geqslant 0$$
  1. Show that, for \(n > 1\) $$I _ { n } = \frac { t ^ { n - 1 } } { 5 ( n + 2 ) } \left( 4 + 5 t ^ { 2 } \right) ^ { \frac { 3 } { 2 } } - \frac { 4 ( n - 1 ) } { 5 ( n + 2 ) } I _ { n - 2 }$$ \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{1241b133-4161-4c04-9b50-067904cc25c2-20_385_394_829_833} \captionsetup{labelformat=empty} \caption{Figure 1}
    \end{figure} The curve shown in Figure 1 is defined by the parametric equations $$x = \frac { 1 } { \sqrt { 5 } } t ^ { 5 } \quad y = \frac { 1 } { 2 } t ^ { 4 } \quad 0 \leqslant t \leqslant 1$$ This curve is rotated through \(2 \pi\) radians about the \(x\)-axis to form a hollow open shell.
  2. Show that the external surface area of the shell is given by $$\pi \int _ { 0 } ^ { 1 } t ^ { 7 } \sqrt { 4 + 5 t ^ { 2 } } \mathrm {~d} t$$ Using the results in parts (a) and (b) and making each step of your working clear,
  3. determine the value of the external surface area of the shell, giving your answer to 3 significant figures.
Edexcel FP2 2021 June Q8
8. $$\mathbf { A } = \left( \begin{array} { r r r } 5 & - 2 & 5
0 & 3 & p
- 6 & 6 & - 4 \end{array} \right) \quad \text { where } p \text { is a constant }$$ Given that \(\left( \begin{array} { r } 2
1
- 2 \end{array} \right)\) is an eigenvector for \(\mathbf { A }\)
    1. determine the eigenvalue corresponding to this eigenvector
    2. hence show that \(p = 2\)
    3. determine the remaining eigenvalues and corresponding eigenvectors of \(\mathbf { A }\)
  1. Write down a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } = \mathbf { P D P } ^ { - 1 }\)
    1. Solve the differential equation \(\dot { u } = k u\), where \(k\) is a constant. With respect to a fixed origin \(O\), the velocity of a particle moving through space is modelled by $$\left( \begin{array} { c } \dot { x }
      \dot { y }
      \dot { z } \end{array} \right) = \mathbf { A } \left( \begin{array} { l } x
      y
      z \end{array} \right)$$ By considering \(\left( \begin{array} { c } u
      v
      w \end{array} \right) = \mathbf { P } ^ { - 1 } \left( \begin{array} { c } x
      y
      z \end{array} \right)\) so that \(\left( \begin{array} { c } \dot { u }
      \dot { v }
      \dot { w } \end{array} \right) = \mathbf { P } ^ { - 1 } \left( \begin{array} { c } \dot { x }
      \dot { y }
      \dot { z } \end{array} \right)\)
    2. determine a general solution for the displacement of the particle.
Edexcel FP2 2022 June Q1
  1. The group \(\mathrm { S } _ { 4 }\) is the set of all possible permutations that can be performed on the four numbers 1, 2, 3 and 4, under the operation of composition.
For the group \(\mathrm { S } _ { 4 }\)
  1. write down the identity element,
  2. write down the inverse of the element \(a\), where $$a = \left( \begin{array} { l l l l } 1 & 2 & 3 & 4
    3 & 4 & 2 & 1 \end{array} \right)$$
  3. demonstrate that the operation of composition is associative using the following elements $$a = \left( \begin{array} { l l l l } 1 & 2 & 3 & 4
    3 & 4 & 2 & 1 \end{array} \right) \quad b = \left( \begin{array} { l l l l } 1 & 2 & 3 & 4
    2 & 4 & 3 & 1 \end{array} \right) \quad \text { and } c = \left( \begin{array} { l l l l } 1 & 2 & 3 & 4
    4 & 1 & 2 & 3 \end{array} \right)$$
  4. Explain why it is possible for the group \(\mathrm { S } _ { 4 }\) to have a subgroup of order 4 You do not need to find such a subgroup.
Edexcel FP2 2022 June Q2
  1. Matrix \(\mathbf { M }\) is given by
$$\mathbf { M } = \left( \begin{array} { r r r } 1 & 0 & a
- 3 & b & 1
0 & 1 & a \end{array} \right)$$ where \(a\) and \(b\) are integers, such that \(a < b\)
Given that the characteristic equation for \(\mathbf { M }\) is $$\lambda ^ { 3 } - 7 \lambda ^ { 2 } + 13 \lambda + c = 0$$ where \(c\) is a constant,
  1. determine the values of \(a , b\) and \(c\).
  2. Hence, using the Cayley-Hamilton theorem, determine the matrix \(\mathbf { M } ^ { - 1 }\)
Edexcel FP2 2022 June Q3
3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9516df6d-0e85-45d8-afb0-281c80450159-08_321_615_294_726} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} There are three lily pads on a pond. A frog hops repeatedly from one lily pad to another.
The frog starts on lily pad A, as shown in Figure 1.
In a model, the frog hops from its position on one lily pad to either of the other two lily pads with equal probability. Let \(p _ { n }\) be the probability that the frog is on lily pad A after \(n\) hops.
  1. Explain, with reference to the model, why \(p _ { 1 } = 0\) The probability \(p _ { n }\) satisfies the recurrence relation $$p _ { n + 1 } = \frac { 1 } { 2 } \left( 1 - p _ { n } \right) \quad n \geqslant 1 \quad \text { where } p _ { 1 } = 0$$
  2. Prove by induction that, for \(n \geqslant 1\) $$p _ { n } = \frac { 2 } { 3 } \left( - \frac { 1 } { 2 } \right) ^ { n } + \frac { 1 } { 3 }$$
  3. Use the result in part (b) to explain why, in the long term, the probability that the frog is on lily pad A is \(\frac { 1 } { 3 }\)
Edexcel FP2 2022 June Q4
  1. (a) Use the Euclidean algorithm to show that 124 and 17 are relatively prime (coprime).
    (b) Hence solve the equation
$$124 x + 17 y = 10$$ (c) Solve the congruence equation $$124 x \equiv 6 \bmod 17$$
Edexcel FP2 2022 June Q5
  1. The locus of points \(z\) satisfies
$$| z + a \mathrm { i } | = 3 | z - a |$$ where \(a\) is an integer.
The locus is a circle with its centre in the third quadrant and radius \(\frac { 3 } { 2 } \sqrt { 2 }\)
Determine
  1. the value of \(a\),
  2. the coordinates of the centre of the circle. \footnotetext{Question 5 continued }
Edexcel FP2 2022 June Q6
6. (a) Determine the general solution of the recurrence relation $$u _ { n } = 2 u _ { n - 1 } - u _ { n - 2 } + 2 ^ { n } \quad n \geqslant 2$$ (b) Hence solve this recurrence relation given that \(u _ { 0 } = 2 u _ { 1 }\) and \(u _ { 4 } = 3 u _ { 2 }\)
Edexcel FP2 2022 June Q7
    1. The polynomial \(\mathrm { F } ( x )\) is a quartic such that
$$\mathrm { F } ( x ) = p x ^ { 4 } + q x ^ { 3 } + 2 x ^ { 2 } + r x + s$$ where \(p , q , r\) and \(s\) are distinct constants.
Determine the number of possible quartics given that
  1. the constants \(p , q , r\) and \(s\) belong to the set \(\{ - 4 , - 2,1,3,5 \}\)
  2. the constants \(p , q , r\) and \(s\) belong to the set \(\{ - 4 , - 2,0,1,3,5 \}\)
    (ii) A 3-digit positive integer \(N = a b c\) has the following properties
    • \(N\) is divisible by 11
    • the sum of the digits of \(N\) is even
    • \(N \equiv 8 \bmod 9\)
    • Use the first two properties to show that
    $$a - b + c = 0$$
  3. Hence determine all possible integers \(N\), showing all your working and reasoning.
Edexcel FP2 2022 June Q8
  1. The locus of points \(z = x + \mathrm { i } y\) that satisfy
$$\arg \left( \frac { z - 8 - 5 i } { z - 2 - 5 i } \right) = \frac { \pi } { 3 }$$ is an arc of a circle \(C\).
  1. On an Argand diagram sketch the locus of \(z\).
  2. Explain why the centre of \(C\) has \(x\) coordinate 5
  3. Determine the radius of \(C\).
  4. Determine the \(y\) coordinate of the centre of \(C\).
Edexcel FP2 2022 June Q9
9. $$I _ { n } = \int _ { 0 } ^ { \frac { \pi } { 2 } } \sin ^ { n } 2 x d x$$
  1. Prove that for \(n \geqslant 2\) $$I _ { n } = \frac { n - 1 } { n } I _ { n - 2 }$$
  2. Hence determine the exact value of $$\int _ { 0 } ^ { \frac { \pi } { 2 } } 64 \sin ^ { 5 } x \cos ^ { 5 } x d x$$
Edexcel FP2 2022 June Q10
10. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9516df6d-0e85-45d8-afb0-281c80450159-28_387_474_340_324} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9516df6d-0e85-45d8-afb0-281c80450159-28_448_716_315_1023} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 2 shows a picture of a plant pot.
The plant pot has
  • a flat circular base of radius 10 cm
  • a height of 15 cm
Figure 3 shows a sketch of the curve \(C\) with parametric equations $$x = 10 + 15 t - 5 t ^ { 3 } \quad y = 15 t ^ { 2 } \quad 0 \leqslant t \leqslant 1$$ The curved inner surface of the plant pot is modelled by the surface of revolution formed by rotating curve \(C\) through \(2 \pi\) radians about the \(y\)-axis.
  1. Show that, according to the model, the area of the curved inner surface of the plant pot is given by $$150 \pi \int _ { 0 } ^ { 1 } \left( 2 + 3 t + 2 t ^ { 2 } + 2 t ^ { 3 } - t ^ { 5 } \right) \mathrm { d } t$$
  2. Determine, according to the model, the total area of the inner surface of the plant pot. Each plant pot will be painted with one coat of paint, both inside and outside. The paint in one tin will cover an area of \(12 \mathrm {~m} ^ { 2 }\)
  3. Use the answer to part (b) to estimate how many plant pots can be painted using one tin of paint.
  4. Give a reason why the model might not give an accurate answer to part (c).
Edexcel FP2 2023 June Q1
1. $$\mathbf { A } = \left( \begin{array} { r r } - 1 & a
3 & 8 \end{array} \right)$$ where \(a\) is a constant.
  1. Determine, in expanded form in terms of \(a\), the characteristic equation for \(\mathbf { A }\).
  2. Hence use the Cayley-Hamilton theorem to determine values of \(a\) and \(b\) such that $$\mathbf { A } ^ { 3 } = \mathbf { A } + b \mathbf { I }$$ where \(\mathbf { I }\) is the \(2 \times 2\) identity matrix.
Edexcel FP2 2023 June Q2
  1. A complex number \(z\) is represented by the point \(P\) in the complex plane.
Given that \(z\) satisfies $$| z - 6 | = 2 | z + 3 i |$$
  1. show that the locus of \(P\) passes through the origin and the points - 4 and - 8 i
  2. Sketch on an Argand diagram the locus of \(P\) as \(z\) varies.
  3. On your sketch, shade the region which satisfies both $$| z - 6 | \geqslant 2 | z + 3 i | \text { and } | z | \leqslant 4$$
Edexcel FP2 2023 June Q3
  1. In a model for the number of subscribers to a new social media channel it is assumed that
  • each week \(20 \%\) of the subscribers at the start of the week cancel their subscriptions
  • between the start and end of week \(n\) the channel gains \(20 n\) new subscribers
Given that at the end of week 1 there were 25 subscribers,
  1. explain why the number of subscribers at the end of week \(n , U _ { n }\), is modelled by the recurrence relation $$U _ { 1 } = 25 \quad U _ { n + 1 } = 0.8 U _ { n } + 20 ( n + 1 ) \quad n = 1,2,3 , \ldots$$
  2. Prove by induction that for \(n \geqslant 1\) $$U _ { n } = 325 \left( \frac { 4 } { 5 } \right) ^ { n - 1 } + 100 n - 400$$ Given that 6 months after starting the channel there were approximately 1800 subscribers,
  3. evaluate the model in the light of this information.
Edexcel FP2 2023 June Q4
  1. (a) Use the Euclidean algorithm to show that the highest common factor of 168 and 66 is 6
    (b) Use back substitution to determine integers \(a\) and \(b\) such that
$$168 a + 66 b = 6$$ (c) Explain why there are no integer solutions to the equation $$168 x + 66 y = 10$$ (d) Solve the congruence equation $$11 v \equiv 8 ( \bmod 28 )$$
Edexcel FP2 2023 June Q5
    1. A security code is made up of 4 numerical digits followed by 3 distinct uppercase letters.
Given that the digits must be from the set \(\{ 1,2,3,4,5 \}\) and the letters from the set \{A, B, C, D\}
  1. determine the total number of possible codes using this system. To enable more codes to be generated, the system is adapted so that the 3 letters can appear anywhere in the code but no letter can be next to another letter.
  2. Determine the increase in the number of codes using this adapted system.
    (ii) A combination lock code consists of four distinct digits that can be read as a positive integer, \(N = a b c d\), satisfying
    • all the digits are odd
    • \(\quad N\) is divisible by 9
    • the digits appear in either ascending or descending order
    • \(\quad N \equiv e ( \bmod a b )\) where \(a b\) is read as a two-digit number and \(e\) is the odd digit that is not used in the code
    • Use the first two properties to determine the four digits used in the code.
    • Hence determine the code on the lock.
Edexcel FP2 2023 June Q6
  1. Determine a closed form for the recurrence relation
$$\begin{aligned} & u _ { 0 } = 1 \quad u _ { 1 } = 4
& u _ { n + 2 } = 2 u _ { n + 1 } - \frac { 4 } { 3 } u _ { n } + n \quad n \geqslant 0 \end{aligned}$$
Edexcel FP2 2023 June Q7
  1. The set \(\mathrm { G } = \mathbb { R } - \left\{ - \frac { 3 } { 2 } \right\}\) with the operation of \(x \bullet y = 3 ( x + y + 1 ) + 2 x y\) forms a group.
    1. Determine the identity element of this group.
    2. Determine the inverse of a general element \(x\) in this group.
    3. Explain why the value \(- \frac { 3 } { 2 }\) must be excluded from \(G\) in order for this to be a group.
Edexcel FP2 2023 June Q8
8. $$I _ { n } = \int _ { 0 } ^ { 2 } ( x - 2 ) ^ { n } \mathrm { e } ^ { 4 x } \mathrm {~d} x \quad n \geqslant 0$$
  1. Prove that for \(n \geqslant 1\) $$I _ { n } = - a ^ { n - 2 } - \frac { n } { 4 } I _ { n - 1 }$$ where \(a\) is a constant to be determined.
  2. Hence determine the exact value of $$\int _ { 0 } ^ { 2 } ( x - 2 ) ^ { 2 } e ^ { 4 x } d x$$
Edexcel FP2 2023 June Q9
9. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{78543314-72b7-4366-98a1-dbb6b852632f-30_312_634_278_717} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a locus in the complex plane.
The locus is an arc of a circle from the point represented by \(z _ { 1 } = 3 + 2 i\) to the point represented by \(z _ { 2 } = a + 4 \mathrm { i }\), where \(a\) is a constant, \(a \neq 1\) Given that
  • the point \(z _ { 3 } = 1 + 4 \mathrm { i }\) also lies on the locus
  • the centre of the circle has real part equal to - 1
    1. determine the value of \(a\).
    2. Hence determine a complex equation for the locus, giving any angles in the equation as positive values.
Edexcel FP2 2023 June Q10
10. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{78543314-72b7-4366-98a1-dbb6b852632f-32_385_679_280_694} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} A solid playing piece for a board game is modelled by rotating the curve \(C\), shown in Figure 2, through \(2 \pi\) radians about the \(x\)-axis. The curve \(C\) has equation $$y = \sqrt { 1 + \frac { x ^ { 2 } } { 9 } } \quad - 4 \leqslant x \leqslant 4$$ with units as centimetres.
  1. Show that the total surface area, \(S \mathrm {~cm} ^ { 2 }\), of the playing piece is given by $$S = p \pi \int _ { - 4 } ^ { 4 } \sqrt { 81 + 10 x ^ { 2 } } \mathrm {~d} x + q \pi$$ where \(p\) and \(q\) are constants to be determined. Using the substitution \(x = \frac { 9 } { \sqrt { 10 } } \sinh u\), or another algebraic integration method, and showing all your working,
  2. determine the total surface area of the playing piece, giving your answer to the nearest \(\mathrm { cm } ^ { 2 }\)
Edexcel FP2 2024 June Q1
  1. In this question you must show detailed reasoning.
Use Fermat's Little Theorem to determine the least positive residue of
\(21 { } ^ { 80 } ( \bmod 23 )\)
(4)