Edexcel FP2 2022 June — Question 1

Exam BoardEdexcel
ModuleFP2 (Further Pure Mathematics 2)
Year2022
SessionJune
TopicGroups

  1. The group \(\mathrm { S } _ { 4 }\) is the set of all possible permutations that can be performed on the four numbers 1, 2, 3 and 4, under the operation of composition.
For the group \(\mathrm { S } _ { 4 }\)
  1. write down the identity element,
  2. write down the inverse of the element \(a\), where $$a = \left( \begin{array} { l l l l } 1 & 2 & 3 & 4
    3 & 4 & 2 & 1 \end{array} \right)$$
  3. demonstrate that the operation of composition is associative using the following elements $$a = \left( \begin{array} { l l l l } 1 & 2 & 3 & 4
    3 & 4 & 2 & 1 \end{array} \right) \quad b = \left( \begin{array} { l l l l } 1 & 2 & 3 & 4
    2 & 4 & 3 & 1 \end{array} \right) \quad \text { and } c = \left( \begin{array} { l l l l } 1 & 2 & 3 & 4
    4 & 1 & 2 & 3 \end{array} \right)$$
  4. Explain why it is possible for the group \(\mathrm { S } _ { 4 }\) to have a subgroup of order 4 You do not need to find such a subgroup.