Edexcel FP2 2023 June — Question 8

Exam BoardEdexcel
ModuleFP2 (Further Pure Mathematics 2)
Year2023
SessionJune
TopicReduction Formulae

8. $$I _ { n } = \int _ { 0 } ^ { 2 } ( x - 2 ) ^ { n } \mathrm { e } ^ { 4 x } \mathrm {~d} x \quad n \geqslant 0$$
  1. Prove that for \(n \geqslant 1\) $$I _ { n } = - a ^ { n - 2 } - \frac { n } { 4 } I _ { n - 1 }$$ where \(a\) is a constant to be determined.
  2. Hence determine the exact value of $$\int _ { 0 } ^ { 2 } ( x - 2 ) ^ { 2 } e ^ { 4 x } d x$$