Edexcel FP2 2021 June — Question 7

Exam BoardEdexcel
ModuleFP2 (Further Pure Mathematics 2)
Year2021
SessionJune
TopicIntegration by Parts

  1. In this question you must show all stages of your working.
You must not use the integration facility on your calculator. $$I _ { n } = \int t ^ { n } \sqrt { 4 + 5 t ^ { 2 } } \mathrm {~d} t \quad n \geqslant 0$$
  1. Show that, for \(n > 1\) $$I _ { n } = \frac { t ^ { n - 1 } } { 5 ( n + 2 ) } \left( 4 + 5 t ^ { 2 } \right) ^ { \frac { 3 } { 2 } } - \frac { 4 ( n - 1 ) } { 5 ( n + 2 ) } I _ { n - 2 }$$ \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{1241b133-4161-4c04-9b50-067904cc25c2-20_385_394_829_833} \captionsetup{labelformat=empty} \caption{Figure 1}
    \end{figure} The curve shown in Figure 1 is defined by the parametric equations $$x = \frac { 1 } { \sqrt { 5 } } t ^ { 5 } \quad y = \frac { 1 } { 2 } t ^ { 4 } \quad 0 \leqslant t \leqslant 1$$ This curve is rotated through \(2 \pi\) radians about the \(x\)-axis to form a hollow open shell.
  2. Show that the external surface area of the shell is given by $$\pi \int _ { 0 } ^ { 1 } t ^ { 7 } \sqrt { 4 + 5 t ^ { 2 } } \mathrm {~d} t$$ Using the results in parts (a) and (b) and making each step of your working clear,
  3. determine the value of the external surface area of the shell, giving your answer to 3 significant figures.