Questions — Edexcel C3 (377 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel C3 2005 June Q4
4. $$\mathrm { f } ( x ) = 3 \mathrm { e } ^ { x } - \frac { 1 } { 2 } \ln x - 2 , \quad x > 0 .$$
  1. Differentiate to find \(\mathrm { f } ^ { \prime } ( x )\). The curve with equation \(y = \mathrm { f } ( x )\) has a turning point at \(P\). The \(x\)-coordinate of \(P\) is \(\alpha\).
  2. Show that \(\alpha = \frac { 1 } { 6 } \mathrm { e } ^ { - \alpha }\). The iterative formula $$x _ { n + 1 } = \frac { 1 } { 6 } \mathrm { e } ^ { - x _ { n } } , x _ { 0 } = 1$$ is used to find an approximate value for \(\alpha\).
  3. Calculate the values of \(x _ { 1 } , x _ { 2 } , x _ { 3 }\) and \(x _ { 4 }\), giving your answers to 4 decimal places.
  4. By considering the change of sign of \(\mathrm { f } ^ { \prime } ( x )\) in a suitable interval, prove that \(\alpha = 0.1443\) correct to 4 decimal places.
Edexcel C3 2005 June Q5
5. (a) Using the identity \(\cos ( A + B ) \equiv \cos A \cos B - \sin A \sin B\), prove that $$\cos 2 A \equiv 1 - 2 \sin ^ { 2 } A$$ (b) Show that $$2 \sin 2 \theta - 3 \cos 2 \theta - 3 \sin \theta + 3 \equiv \sin \theta ( 4 \cos \theta + 6 \sin \theta - 3 )$$ (c) Express \(4 \cos \theta + 6 \sin \theta\) in the form \(R \sin ( \theta + \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { 1 } { 2 } \pi\).
(d) Hence, for \(0 \leqslant \theta < \pi\), solve $$2 \sin 2 \theta = 3 ( \cos 2 \theta + \sin \theta - 1 )$$ giving your answers in radians to 3 significant figures, where appropriate.
Edexcel C3 2005 June Q6
6. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{5af2eea6-bac1-455b-b25a-487d113e44ca-08_458_876_285_539}
\end{figure} Figure 1 shows part of the graph of \(y = \mathrm { f } ( x ) , x \in \mathbb { R }\). The graph consists of two line segments that meet at the point \(( 1 , a ) , a < 0\). One line meets the \(x\)-axis at \(( 3,0 )\). The other line meets the \(x\)-axis at \(( - 1,0 )\) and the \(y\)-axis at \(( 0 , b ) , b < 0\). In separate diagrams, sketch the graph with equation
  1. \(y = \mathrm { f } ( x + 1 )\),
  2. \(y = \mathrm { f } ( | x | )\). Indicate clearly on each sketch the coordinates of any points of intersection with the axes. Given that \(\mathrm { f } ( x ) = | x - 1 | - 2\), find
  3. the value of \(a\) and the value of \(b\),
  4. the value of \(x\) for which \(\mathrm { f } ( x ) = 5 x\).
Edexcel C3 2005 June Q7
  1. A particular species of orchid is being studied. The population \(p\) at time \(t\) years after the study started is assumed to be
$$p = \frac { 2800 a \mathrm { e } ^ { 0.2 t } } { 1 + a \mathrm { e } ^ { 0.2 t } } , \text { where } a \text { is a constant. }$$ Given that there were 300 orchids when the study started,
  1. show that \(a = 0.12\),
  2. use the equation with \(a = 0.12\) to predict the number of years before the population of orchids reaches 1850.
  3. Show that \(p = \frac { 336 } { 0.12 + \mathrm { e } ^ { - 0.2 t } }\).
  4. Hence show that the population cannot exceed 2800.
Edexcel C3 2006 June Q1
  1. Simplify \(\frac { 3 x ^ { 2 } - x - 2 } { x ^ { 2 } - 1 }\).
  2. Hence, or otherwise, express \(\frac { 3 x ^ { 2 } - x - 2 } { x ^ { 2 } - 1 } - \frac { 1 } { x ( x + 1 ) }\) as a single fraction in its simplest form.
Edexcel C3 2006 June Q4
  1. A heated metal ball is dropped into a liquid. As the ball cools, its temperature, \(T ^ { \circ } \mathrm { C }\), \(t\) minutes after it enters the liquid, is given by
$$T = 400 \mathrm { e } ^ { - 0.05 t } + 25 , \quad t \geqslant 0$$
  1. Find the temperature of the ball as it enters the liquid.
  2. Find the value of \(t\) for which \(T = 300\), giving your answer to 3 significant figures.
  3. Find the rate at which the temperature of the ball is decreasing at the instant when \(t = 50\). Give your answer in \({ } ^ { \circ } \mathrm { C }\) per minute to 3 significant figures.
  4. From the equation for temperature \(T\) in terms of \(t\), given above, explain why the temperature of the ball can never fall to \(20 ^ { \circ } \mathrm { C }\).
Edexcel C3 2006 June Q5
5. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 2} \includegraphics[alt={},max width=\textwidth]{f0f328ed-3550-4b8d-8b80-016df8773b21-07_465_565_296_701}
\end{figure} Figure 2 shows part of the curve with equation $$y = ( 2 x - 1 ) \tan 2 x , \quad 0 \leqslant x < \frac { \pi } { 4 }$$ The curve has a minimum at the point \(P\). The \(x\)-coordinate of \(P\) is \(k\).
  1. Show that \(k\) satisfies the equation $$4 k + \sin 4 k - 2 = 0$$ The iterative formula $$x _ { n + 1 } = \frac { 1 } { 4 } \left( 2 - \sin 4 x _ { n } \right) , x _ { 0 } = 0.3$$ is used to find an approximate value for \(k\).
  2. Calculate the values of \(x _ { 1 } , x _ { 2 } , x _ { 3 }\) and \(x _ { 4 }\), giving your answers to 4 decimal places.
  3. Show that \(k = 0.277\), correct to 3 significant figures.
Edexcel C3 2006 June Q6
  1. (a) Using \(\sin ^ { 2 } \theta + \cos ^ { 2 } \theta \equiv 1\), show that \(\operatorname { cosec } ^ { 2 } \theta - \cot ^ { 2 } \theta \equiv 1\).
    (b) Hence, or otherwise, prove that
$$\operatorname { cosec } ^ { 4 } \theta - \cot ^ { 4 } \theta \equiv \operatorname { cosec } ^ { 2 } \theta + \cot ^ { 2 } \theta$$ (c) Solve, for \(90 ^ { \circ } < \theta < 180 ^ { \circ }\), $$\operatorname { cosec } ^ { 4 } \theta - \cot ^ { 4 } \theta = 2 - \cot \theta$$
Edexcel C3 2006 June Q7
7. For the constant \(k\), where \(k > 1\), the functions f and g are defined by $$\begin{aligned} & \mathrm { f } : x \mapsto \ln ( x + k ) , \quad x > - k ,
& \mathrm {~g} : x \mapsto | 2 x - k | , \quad x \in \mathbb { R } . \end{aligned}$$
  1. On separate axes, sketch the graph of f and the graph of g . On each sketch state, in terms of \(k\), the coordinates of points where the graph meets the coordinate axes.
  2. Write down the range of f.
  3. Find \(\mathrm { fg } \left( \frac { k } { 4 } \right)\) in terms of \(k\), giving your answer in its simplest form. The curve \(C\) has equation \(y = \mathrm { f } ( x )\). The tangent to \(C\) at the point with \(x\)-coordinate 3 is parallel to the line with equation \(9 y = 2 x + 1\).
  4. Find the value of \(k\).
Edexcel C3 2006 June Q8
  1. (a) Given that \(\cos A = \frac { 3 } { 4 }\), where \(270 ^ { \circ } < A < 360 ^ { \circ }\), find the exact value of \(\sin 2 A\).
    (b) (i) Show that \(\cos \left( 2 x + \frac { \pi } { 3 } \right) + \cos \left( 2 x - \frac { \pi } { 3 } \right) \equiv \cos 2 x\).
Given that $$y = 3 \sin ^ { 2 } x + \cos \left( 2 x + \frac { \pi } { 3 } \right) + \cos \left( 2 x - \frac { \pi } { 3 } \right)$$ (ii) show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \sin 2 x\).
Edexcel C3 2007 June Q1
Find the exact solutions to the equations
  1. \(\ln x + \ln 3 = \ln 6\),
  2. \(\mathrm { e } ^ { x } + 3 \mathrm { e } ^ { - x } = 4\).
Edexcel C3 2007 June Q3
3. A curve \(C\) has equation $$y = x ^ { 2 } \mathrm { e } ^ { x }$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), using the product rule for differentiation.
  2. Hence find the coordinates of the turning points of \(C\).
  3. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
  4. Determine the nature of each turning point of the curve \(C\).
Edexcel C3 2007 June Q4
4. $$f ( x ) = - x ^ { 3 } + 3 x ^ { 2 } - 1$$
  1. Show that the equation \(\mathrm { f } ( x ) = 0\) can be rewritten as $$x = \sqrt { } \left( \frac { 1 } { 3 - x } \right)$$
  2. Starting with \(x _ { 1 } = 0.6\), use the iteration $$\left. x _ { n + 1 } = \sqrt { ( } \frac { 1 } { 3 - x _ { n } } \right)$$ to calculate the values of \(x _ { 2 } , x _ { 3 }\) and \(x _ { 4 }\), giving all your answers to 4 decimal places.
  3. Show that \(x = 0.653\) is a root of \(\mathrm { f } ( x ) = 0\) correct to 3 decimal places.
Edexcel C3 2007 June Q5
5. The functions \(f\) and \(g\) are defined by $$\begin{array} { l l } \mathrm { f } : x \mapsto \ln ( 2 x - 1 ) , & x \in \mathbb { R } , x > \frac { 1 } { 2 }
\mathrm {~g} : x \mapsto \frac { 2 } { x - 3 } , & x \in \mathbb { R } , x \neq 3 \end{array}$$
  1. Find the exact value of fg(4).
  2. Find the inverse function \(\mathrm { f } ^ { - 1 } ( x )\), stating its domain.
  3. Sketch the graph of \(y = | \mathrm { g } ( x ) |\). Indicate clearly the equation of the vertical asymptote and the coordinates of the point at which the graph crosses the \(y\)-axis.
  4. Find the exact values of \(x\) for which \(\left| \frac { 2 } { x - 3 } \right| = 3\).
Edexcel C3 2007 June Q6
  1. (a) Express \(3 \sin x + 2 \cos x\) in the form \(R \sin ( x + \alpha )\) where \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\).
    (b) Hence find the greatest value of \(( 3 \sin x + 2 \cos x ) ^ { 4 }\).
    (c) Solve, for \(0 < x < 2 \pi\), the equation
$$3 \sin x + 2 \cos x = 1$$ giving your answers to 3 decimal places.
Edexcel C3 2007 June Q7
  1. (a) Prove that
$$\frac { \sin \theta } { \cos \theta } + \frac { \cos \theta } { \sin \theta } = 2 \operatorname { cosec } 2 \theta , \quad \theta \neq 90 n ^ { \circ }$$ (b) On the axes on page 20, sketch the graph of \(y = 2 \operatorname { cosec } 2 \theta\) for \(0 ^ { \circ } < \theta < 360 ^ { \circ }\).
(c) Solve, for \(0 ^ { \circ } < \theta < 360 ^ { \circ }\), the equation $$\frac { \sin \theta } { \cos \theta } + \frac { \cos \theta } { \sin \theta } = 3 ,$$ giving your answers to 1 decimal place.
\includegraphics[max width=\textwidth, alt={}, center]{f3c3c777-7808-4d82-a1f4-2dee6674be1e-11_899_1253_315_347}
Edexcel C3 2007 June Q8
8. The amount of a certain type of drug in the bloodstream \(t\) hours after it has been taken is given by the formula $$x = D \mathrm { e } ^ { - \frac { 1 } { 8 } t } ,$$ where \(x\) is the amount of the drug in the bloodstream in milligrams and \(D\) is the dose given in milligrams. A dose of 10 mg of the drug is given.
  1. Find the amount of the drug in the bloodstream 5 hours after the dose is given. Give your answer in mg to 3 decimal places. A second dose of 10 mg is given after 5 hours.
  2. Show that the amount of the drug in the bloodstream 1 hour after the second dose is 13.549 mg to 3 decimal places. No more doses of the drug are given. At time \(T\) hours after the second dose is given, the amount of the drug in the bloodstream is 3 mg .
  3. Find the value of \(T\).
Edexcel C3 2008 June Q1
  1. The point \(P\) lies on the curve with equation
$$y = 4 \mathrm { e } ^ { 2 x + 1 }$$ The \(y\)-coordinate of \(P\) is 8 .
  1. Find, in terms of \(\ln 2\), the \(x\)-coordinate of \(P\).
  2. Find the equation of the tangent to the curve at the point \(P\) in the form \(y = a x + b\), where \(a\) and \(b\) are exact constants to be found.
Edexcel C3 2008 June Q2
2. $$f ( x ) = 5 \cos x + 12 \sin x$$ Given that \(\mathrm { f } ( x ) = R \cos ( x - \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\),
  1. find the value of \(R\) and the value of \(\alpha\) to 3 decimal places.
  2. Hence solve the equation $$5 \cos x + 12 \sin x = 6$$ for \(0 \leqslant x < 2 \pi\).
    1. Write down the maximum value of \(5 \cos x + 12 \sin x\).
    2. Find the smallest positive value of \(x\) for which this maximum value occurs.
Edexcel C3 2008 June Q3
3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f47675f8-a2c2-4c4c-b878-ffe15a95c19d-05_623_977_207_479} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the graph of \(y = f ( x ) , x \in \mathbb { R }\).
The graph consists of two line segments that meet at the point \(P\).
The graph cuts the \(y\)-axis at the point \(Q\) and the \(x\)-axis at the points \(( - 3,0 )\) and \(R\). Sketch, on separate diagrams, the graphs of
  1. \(y = | f ( x ) |\),
  2. \(y = \mathrm { f } ( - x )\). Given that \(\mathrm { f } ( x ) = 2 - | x + 1 |\),
  3. find the coordinates of the points \(P , Q\) and \(R\),
  4. solve \(\mathrm { f } ( x ) = \frac { 1 } { 2 } x\).
Edexcel C3 2008 June Q4
4. The function \(f\) is defined by $$f : x \mapsto \frac { 2 ( x - 1 ) } { x ^ { 2 } - 2 x - 3 } - \frac { 1 } { x - 3 } , \quad x > 3$$
  1. Show that \(\mathrm { f } ( x ) = \frac { 1 } { x + 1 } , \quad x > 3\).
  2. Find the range of f.
  3. Find \(\mathrm { f } ^ { - 1 } ( x )\). State the domain of this inverse function. The function \(g\) is defined by $$\mathrm { g } : x \mapsto 2 x ^ { 2 } - 3 , \quad x \in \mathbb { R }$$
  4. Solve \(\mathrm { fg } ( x ) = \frac { 1 } { 8 }\).
Edexcel C3 2008 June Q5
5. (a) Given that \(\sin ^ { 2 } \theta + \cos ^ { 2 } \theta \equiv 1\), show that \(1 + \cot ^ { 2 } \theta \equiv \operatorname { cosec } ^ { 2 } \theta\).
(b) Solve, for \(0 \leqslant \theta < 180 ^ { \circ }\), the equation $$2 \cot ^ { 2 } \theta - 9 \operatorname { cosec } \theta = 3$$ giving your answers to 1 decimal place.
Edexcel C3 2008 June Q6
6. (a) Differentiate with respect to \(x\),
  1. \(\mathrm { e } ^ { 3 x } ( \sin x + 2 \cos x )\),
  2. \(x ^ { 3 } \ln ( 5 x + 2 )\). Given that \(y = \frac { 3 x ^ { 2 } + 6 x - 7 } { ( x + 1 ) ^ { 2 } } , \quad x \neq - 1\),
    (b) show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 20 } { ( x + 1 ) ^ { 3 } }\).
    (c) Hence find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) and the real values of \(x\) for which \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = - \frac { 15 } { 4 }\).
Edexcel C3 2008 June Q7
7. $$f ( x ) = 3 x ^ { 3 } - 2 x - 6$$
  1. Show that \(\mathrm { f } ( x ) = 0\) has a root, \(\alpha\), between \(x = 1.4\) and \(x = 1.45\)
  2. Show that the equation \(\mathrm { f } ( x ) = 0\) can be written as $$x = \sqrt { } \left( \frac { 2 } { x } + \frac { 2 } { 3 } \right) , \quad x \neq 0$$
  3. Starting with \(x _ { 0 } = 1.43\), use the iteration $$x _ { \mathrm { n } + 1 } = \sqrt { } \left( \frac { 2 } { x _ { \mathrm { n } } } + \frac { 2 } { 3 } \right)$$ to calculate the values of \(x _ { 1 } , x _ { 2 }\) and \(x _ { 3 }\), giving your answers to 4 decimal places.
  4. By choosing a suitable interval, show that \(\alpha = 1.435\) is correct to 3 decimal places.
Edexcel C3 2009 June Q1
1. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{bcb0c693-66ae-4b97-99f8-b10fb9396886-02_579_1240_251_383} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows part of the curve with equation \(y = - x ^ { 3 } + 2 x ^ { 2 } + 2\), which intersects the \(x\)-axis at the point \(A\) where \(x = \alpha\). To find an approximation to \(\alpha\), the iterative formula $$x _ { n + 1 } = \frac { 2 } { \left( x _ { n } \right) ^ { 2 } } + 2$$ is used.
  1. Taking \(x _ { 0 } = 2.5\), find the values of \(x _ { 1 } , x _ { 2 } , x _ { 3 }\) and \(x _ { 4 }\). Give your answers to 3 decimal places where appropriate.
  2. Show that \(\alpha = 2.359\) correct to 3 decimal places.