4.
$$\mathrm { f } ( x ) = 3 \mathrm { e } ^ { x } - \frac { 1 } { 2 } \ln x - 2 , \quad x > 0 .$$
- Differentiate to find \(\mathrm { f } ^ { \prime } ( x )\).
The curve with equation \(y = \mathrm { f } ( x )\) has a turning point at \(P\). The \(x\)-coordinate of \(P\) is \(\alpha\).
- Show that \(\alpha = \frac { 1 } { 6 } \mathrm { e } ^ { - \alpha }\).
The iterative formula
$$x _ { n + 1 } = \frac { 1 } { 6 } \mathrm { e } ^ { - x _ { n } } , x _ { 0 } = 1$$
is used to find an approximate value for \(\alpha\).
- Calculate the values of \(x _ { 1 } , x _ { 2 } , x _ { 3 }\) and \(x _ { 4 }\), giving your answers to 4 decimal places.
- By considering the change of sign of \(\mathrm { f } ^ { \prime } ( x )\) in a suitable interval, prove that \(\alpha = 0.1443\) correct to 4 decimal places.