| Exam Board | Edexcel |
| Module | C3 (Core Mathematics 3) |
| Year | 2008 |
| Session | June |
| Topic | Reciprocal Trig & Identities |
5. (a) Given that \(\sin ^ { 2 } \theta + \cos ^ { 2 } \theta \equiv 1\), show that \(1 + \cot ^ { 2 } \theta \equiv \operatorname { cosec } ^ { 2 } \theta\).
(b) Solve, for \(0 \leqslant \theta < 180 ^ { \circ }\), the equation
$$2 \cot ^ { 2 } \theta - 9 \operatorname { cosec } \theta = 3$$
giving your answers to 1 decimal place.