Edexcel C3 2005 June — Question 5

Exam BoardEdexcel
ModuleC3 (Core Mathematics 3)
Year2005
SessionJune
TopicAddition & Double Angle Formulae

5. (a) Using the identity \(\cos ( A + B ) \equiv \cos A \cos B - \sin A \sin B\), prove that $$\cos 2 A \equiv 1 - 2 \sin ^ { 2 } A$$ (b) Show that $$2 \sin 2 \theta - 3 \cos 2 \theta - 3 \sin \theta + 3 \equiv \sin \theta ( 4 \cos \theta + 6 \sin \theta - 3 )$$ (c) Express \(4 \cos \theta + 6 \sin \theta\) in the form \(R \sin ( \theta + \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { 1 } { 2 } \pi\).
(d) Hence, for \(0 \leqslant \theta < \pi\), solve $$2 \sin 2 \theta = 3 ( \cos 2 \theta + \sin \theta - 1 )$$ giving your answers in radians to 3 significant figures, where appropriate.