Edexcel C3 2007 June — Question 7

Exam BoardEdexcel
ModuleC3 (Core Mathematics 3)
Year2007
SessionJune
TopicReciprocal Trig & Identities

  1. (a) Prove that
$$\frac { \sin \theta } { \cos \theta } + \frac { \cos \theta } { \sin \theta } = 2 \operatorname { cosec } 2 \theta , \quad \theta \neq 90 n ^ { \circ }$$ (b) On the axes on page 20, sketch the graph of \(y = 2 \operatorname { cosec } 2 \theta\) for \(0 ^ { \circ } < \theta < 360 ^ { \circ }\).
(c) Solve, for \(0 ^ { \circ } < \theta < 360 ^ { \circ }\), the equation $$\frac { \sin \theta } { \cos \theta } + \frac { \cos \theta } { \sin \theta } = 3 ,$$ giving your answers to 1 decimal place.
\includegraphics[max width=\textwidth, alt={}, center]{f3c3c777-7808-4d82-a1f4-2dee6674be1e-11_899_1253_315_347}