Edexcel C3 2008 June — Question 2

Exam BoardEdexcel
ModuleC3 (Core Mathematics 3)
Year2008
SessionJune
TopicHarmonic Form

2. $$f ( x ) = 5 \cos x + 12 \sin x$$ Given that \(\mathrm { f } ( x ) = R \cos ( x - \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\),
  1. find the value of \(R\) and the value of \(\alpha\) to 3 decimal places.
  2. Hence solve the equation $$5 \cos x + 12 \sin x = 6$$ for \(0 \leqslant x < 2 \pi\).
    1. Write down the maximum value of \(5 \cos x + 12 \sin x\).
    2. Find the smallest positive value of \(x\) for which this maximum value occurs.