Edexcel C3 2006 June — Question 6

Exam BoardEdexcel
ModuleC3 (Core Mathematics 3)
Year2006
SessionJune
TopicReciprocal Trig & Identities

  1. (a) Using \(\sin ^ { 2 } \theta + \cos ^ { 2 } \theta \equiv 1\), show that \(\operatorname { cosec } ^ { 2 } \theta - \cot ^ { 2 } \theta \equiv 1\).
    (b) Hence, or otherwise, prove that
$$\operatorname { cosec } ^ { 4 } \theta - \cot ^ { 4 } \theta \equiv \operatorname { cosec } ^ { 2 } \theta + \cot ^ { 2 } \theta$$ (c) Solve, for \(90 ^ { \circ } < \theta < 180 ^ { \circ }\), $$\operatorname { cosec } ^ { 4 } \theta - \cot ^ { 4 } \theta = 2 - \cot \theta$$