- (a) Using \(\sin ^ { 2 } \theta + \cos ^ { 2 } \theta \equiv 1\), show that \(\operatorname { cosec } ^ { 2 } \theta - \cot ^ { 2 } \theta \equiv 1\).
(b) Hence, or otherwise, prove that
$$\operatorname { cosec } ^ { 4 } \theta - \cot ^ { 4 } \theta \equiv \operatorname { cosec } ^ { 2 } \theta + \cot ^ { 2 } \theta$$
(c) Solve, for \(90 ^ { \circ } < \theta < 180 ^ { \circ }\),
$$\operatorname { cosec } ^ { 4 } \theta - \cot ^ { 4 } \theta = 2 - \cot \theta$$