Questions — CAIE (7659 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE Further Paper 1 2020 November Q6
6 The curve \(C\) has equation \(\mathrm { y } = \frac { \mathrm { x } ^ { 2 } + \mathrm { x } - 1 } { \mathrm { x } - 1 }\).
  1. Find the equations of the asymptotes of \(C\).
  2. Show that there is no point on \(C\) for which \(1 < y < 5\).
  3. Find the coordinates of the intersections of \(C\) with the axes, and sketch \(C\).
  4. Sketch the curve with equation \(\mathrm { y } = \left| \frac { \mathrm { x } ^ { 2 } + \mathrm { x } - 1 } { \mathrm { x } - 1 } \right|\).
CAIE Further Paper 1 2020 November Q7
7
  1. Show that the curve with Cartesian equation $$\left( x ^ { 2 } + y ^ { 2 } \right) ^ { \frac { 5 } { 2 } } = 4 x y \left( x ^ { 2 } - y ^ { 2 } \right)$$ has polar equation \(r = \sin 4 \theta\).
    The curve \(C\) has polar equation \(r = \sin 4 \theta\), for \(0 \leqslant \theta \leqslant \frac { 1 } { 4 } \pi\).
  2. Sketch \(C\) and state the equation of the line of symmetry.
  3. Find the exact value of the area of the region enclosed by \(C\).
  4. Using the identity \(\sin 4 \theta \equiv 4 \sin \theta \cos ^ { 3 } \theta - 4 \sin ^ { 3 } \theta \cos \theta\), find the maximum distance of \(C\) from the line \(\theta = \frac { 1 } { 2 } \pi\). Give your answer correct to 2 decimal places.
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE Further Paper 1 2022 November Q1
1 The cubic equation \(x ^ { 3 } + b x ^ { 2 } + d = 0\) has roots \(\alpha , \beta , \gamma\), where \(\alpha = \beta\) and \(d \neq 0\).
  1. Show that \(4 b ^ { 3 } + 27 d = 0\).
  2. Given that \(2 \alpha ^ { 2 } + \gamma ^ { 2 } = 3 b\), find the values of \(b\) and \(d\).
CAIE Further Paper 1 2022 November Q2
6 marks
2 Prove by mathematical induction that, for all positive integers \(n , 7 ^ { 2 n } + 97 ^ { n } - 50\) is divisible by 48. [6]
CAIE Further Paper 1 2022 November Q3
3
  1. By considering \(( 2 r + 1 ) ^ { 3 } - ( 2 r - 1 ) ^ { 3 }\), use the method of differences to prove that $$\sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { 1 } { 6 } n ( n + 1 ) ( 2 n + 1 )$$ Let \(S _ { n } = 1 ^ { 2 } + 3 \times 2 ^ { 2 } + 3 ^ { 2 } + 3 \times 4 ^ { 2 } + 5 ^ { 2 } + 3 \times 6 ^ { 2 } + \ldots + \left( 2 + ( - 1 ) ^ { n } \right) n ^ { 2 }\).
  2. Show that \(\mathrm { S } _ { 2 \mathrm { n } } = \frac { 1 } { 3 } \mathrm { n } ( 2 \mathrm { n } + 1 ) ( \mathrm { an } + \mathrm { b } )\), where \(a\) and \(b\) are integers to be determined.
  3. State the value of \(\lim _ { n \rightarrow \infty } \frac { S _ { 2 n } } { n ^ { 3 } }\).
CAIE Further Paper 1 2022 November Q4
4 The plane \(\Pi\) contains the lines \(\mathbf { r } = 3 \mathbf { i } - 2 \mathbf { j } + \mathbf { k } + \lambda ( - \mathbf { i } + 2 \mathbf { j } + \mathbf { k } )\) and \(\mathbf { r } = 4 \mathbf { i } + 4 \mathbf { j } + 2 \mathbf { k } + \mu ( 3 \mathbf { i } + 2 \mathbf { j } - \mathbf { k } )\).
  1. Find a Cartesian equation of \(\Pi\), giving your answer in the form \(a x + b y + c z = d\).
    The line \(l\) passes through the point \(P\) with position vector \(2 \mathbf { i } + 3 \mathbf { j } + \mathbf { k }\) and is parallel to the vector \(\mathbf { j } + \mathbf { k }\).
  2. Find the acute angle between \(I\) and \(\Pi\).
  3. Find the position vector of the foot of the perpendicular from \(P\) to \(\Pi\).
CAIE Further Paper 1 2022 November Q5
5 The matrix \(\mathbf { M }\) is given by \(\mathbf { M } = \left( \begin{array} { r r } \frac { 1 } { 2 } \sqrt { 2 } & - \frac { 1 } { 2 } \sqrt { 2 } \\ \frac { 1 } { 2 } \sqrt { 2 } & \frac { 1 } { 2 } \sqrt { 2 } \end{array} \right) \left( \begin{array} { c c } 1 & k \\ 0 & 1 \end{array} \right)\), where \(k\) is a constant.
  1. The matrix \(\mathbf { M }\) represents a sequence of two geometrical transformations. State the type of each transformation, and make clear the order in which they are applied.
  2. The triangle \(A B C\) in the \(x - y\) plane is transformed by \(\mathbf { M }\) onto triangle \(D E F\). Find, in terms of \(k\), the single matrix which transforms triangle \(D E F\) onto triangle \(A B C\).
  3. Find the set of values of \(k\) for which the transformation represented by \(\mathbf { M }\) has no invariant lines through the origin.
CAIE Further Paper 1 2022 November Q6
6
  1. Show that the curve with Cartesian equation $$\left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } = 36 \left( x ^ { 2 } - y ^ { 2 } \right)$$ has polar equation \(r ^ { 2 } = 36 \cos 2 \theta\).
    The curve \(C\) has polar equation \(r ^ { 2 } = 36 \cos 2 \theta\), for \(- \frac { 1 } { 4 } \pi \leqslant \theta \leqslant \frac { 1 } { 4 } \pi\).
  2. Sketch \(C\) and state the maximum distance of a point on \(C\) from the pole.
  3. Find the area of the region enclosed by \(C\).
  4. Find the maximum distance of a point on \(C\) from the initial line, giving the answer in exact form.
CAIE Further Paper 1 2022 November Q7
7 The curve \(C\) has equation \(y = \frac { 5 x ^ { 2 } } { 5 x - 2 }\).
  1. Find the equations of the asymptotes of \(C\).
  2. Find the coordinates of the stationary points on \(C\).
  3. Sketch \(C\).
  4. Sketch the curve with equation \(y = \left| \frac { 5 x ^ { 2 } } { 5 x - 2 } \right|\) and find in exact form the set of values of \(x\) for which \(\left| \frac { 5 x ^ { 2 } } { 5 x - 2 } \right| < 2\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.
CAIE Further Paper 1 2023 November Q1
1
  1. By considering \(( r + 1 ) ^ { 2 } - r ^ { 2 }\), use the method of differences to prove that $$\sum _ { r = 1 } ^ { n } r = \frac { 1 } { 2 } n ( n + 1 )$$
  2. Given that \(\sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } ( \mathrm { r } + \mathrm { a } ) = \mathrm { n }\), find \(a\) in terms of \(n\).
CAIE Further Paper 1 2023 November Q2
2 Prove by mathematical induction that, for all positive integers \(n\), $$1 + 2 x + 3 x ^ { 2 } + \ldots + n x ^ { n - 1 } = \frac { 1 - ( n + 1 ) x ^ { n } + n x ^ { n + 1 } } { ( 1 - x ) ^ { 2 } }$$
CAIE Further Paper 1 2023 November Q3
3 The quartic equation \(\mathrm { x } ^ { 4 } + \mathrm { bx } ^ { 3 } + \mathrm { cx } ^ { 2 } + \mathrm { dx } - 2 = 0\) has roots \(\alpha , \beta , \gamma , \delta\). It is given that $$\alpha + \beta + \gamma + \delta = 3 , \quad \alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } + \delta ^ { 2 } = 5 , \quad \alpha ^ { - 1 } + \beta ^ { - 1 } + \gamma ^ { - 1 } + \delta ^ { - 1 } = 6$$
  1. Find the values of \(b , c\) and \(d\).
  2. Given also that \(\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } + \delta ^ { 3 } = - 27\), find the value of \(\alpha ^ { 4 } + \beta ^ { 4 } + \gamma ^ { 4 } + \delta ^ { 4 }\).
CAIE Further Paper 1 2023 November Q4
4 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations $$\mathbf { r } = - 2 \mathbf { i } - 3 \mathbf { j } - 5 \mathbf { k } + \lambda ( - 4 \mathbf { i } + 3 \mathbf { j } + 5 \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = 2 \mathbf { i } - 2 \mathbf { j } + 3 \mathbf { k } + \mu ( 2 \mathbf { i } - 3 \mathbf { j } + \mathbf { k } )$$ respectively.
  1. Find the shortest distance between \(l _ { 1 }\) and \(l _ { 2 }\).
    The plane \(\Pi\) contains \(l _ { 1 }\) and the point with position vector \(- \mathbf { i } - 3 \mathbf { j } - 4 \mathbf { k }\).
  2. Find an equation of \(\Pi\), giving your answer in the form \(a x + b y + c z = d\).
CAIE Further Paper 1 2023 November Q5
5 Let \(k\) be a constant. The matrices \(\mathbf { A } , \mathbf { B }\) and \(\mathbf { C }\) are given by $$\mathbf { A } = \left( \begin{array} { l l l } 1 & k & 3 \\ 2 & 1 & 3 \\ 3 & 2 & 5 \end{array} \right) , \quad \mathbf { B } = \left( \begin{array} { r r } 0 & - 2 \\ - 1 & 3 \\ 0 & 0 \end{array} \right) \quad \text { and } \quad \mathbf { C } = \left( \begin{array} { r r r } - 2 & - 1 & 1 \\ 1 & 1 & 3 \end{array} \right)$$ It is given that \(\mathbf { A }\) is singular.
  1. Show that \(\mathbf { C A B } = \left( \begin{array} { r r } 3 & - 7 \\ - 9 & 3 \end{array} \right)\).
  2. Find the equations of the invariant lines, through the origin, of the transformation in the \(x - y\) plane represented by \(\mathbf { C A B }\).
  3. The matrices \(\mathbf { D } , \mathbf { E }\) and \(\mathbf { F }\) represent geometrical transformations in the \(x - y\) plane.
    • D represents an enlargement, centre the origin.
    • E represents a stretch parallel to the \(x\)-axis.
    • F represents a reflection in the line \(y = x\).
    Given that \(\mathbf { C A B } = \mathbf { D } - 9 \mathbf { E F }\), find \(\mathbf { D } , \mathbf { E }\) and \(\mathbf { F }\).
CAIE Further Paper 1 2023 November Q6
6
  1. Show that the curve with Cartesian equation $$\left( x - \frac { 1 } { 2 } \right) ^ { 2 } + y ^ { 2 } = \frac { 1 } { 4 }$$ has polar equation \(r = \cos \theta\).
    The curves \(C _ { 1 }\) and \(C _ { 2 }\) have polar equations $$r = \cos \theta \quad \text { and } \quad r = \sin 2 \theta$$ respectively, where \(0 \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\). The curves \(C _ { 1 }\) and \(C _ { 2 }\) intersect at the pole and at another point \(P\).
  2. Find the polar coordinates of \(P\).
  3. In a single diagram sketch \(C _ { 1 }\) and \(C _ { 2 }\), clearly identifying each curve, and mark the point \(P\).
  4. The region \(R\) is enclosed by \(C _ { 1 }\) and \(C _ { 2 }\) and includes the line \(O P\). Find, in exact form, the area of \(R\).
CAIE Further Paper 1 2023 November Q7
7 The curve \(C\) has equation \(y = f ( x )\), where \(f ( x ) = \frac { x ^ { 2 } + 2 } { x ^ { 2 } - x - 2 }\).
  1. Find the equations of the asymptotes of \(C\).
  2. Find the coordinates of any stationary points on \(C\), giving your answers correct to 1 decimal place.
  3. Sketch \(C\), stating the coordinates of any intersections with the axes.
  4. Sketch the curve with equation \(\mathrm { y } = \frac { 1 } { \mathrm { f } ( \mathrm { x } ) }\).
  5. Find the set of values for which \(\frac { 1 } { \mathrm { f } ( x ) } < \mathrm { f } ( x )\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.
CAIE FP1 2010 June Q1
1 The variables \(x\) and \(y\) are such that \(y = - 1\) when \(x = 1\) and $$x ^ { 2 } + y ^ { 2 } + \left( \frac { \mathrm { d } y } { \mathrm {~d} x } \right) ^ { 3 } = 29$$ Find the values of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) when \(x = 1\).
CAIE FP1 2010 June Q2
2 The curve \(C\) has polar equation $$r = a \left( 1 - \mathrm { e } ^ { - \theta } \right)$$ where \(a\) is a positive constant and \(0 \leqslant \theta < 2 \pi\).
  1. Draw a sketch of \(C\).
  2. Show that the area of the region bounded by \(C\) and the lines \(\theta = \ln 2\) and \(\theta = \ln 4\) is $$\frac { 1 } { 2 } a ^ { 2 } \left( \ln 2 - \frac { 13 } { 32 } \right)$$
CAIE FP1 2010 June Q3
3 At any point \(( x , y )\) on the curve \(C\), $$\frac { \mathrm { d } x } { \mathrm {~d} t } = t \sqrt { } \left( t ^ { 2 } + 4 \right) \quad \text { and } \quad \frac { \mathrm { d } y } { \mathrm {~d} t } = - t \sqrt { } \left( 4 - t ^ { 2 } \right)$$ where the parameter \(t\) is such that \(0 \leqslant t \leqslant 2\). Show that the length of \(C\) is \(4 \sqrt { } 2\). Given that \(y = 0\) when \(t = 2\), determine the area of the surface generated when \(C\) is rotated through one complete revolution about the \(x\)-axis, leaving your answer in an exact form.
CAIE FP1 2010 June Q4
4 The sum \(S _ { N }\) is defined by \(S _ { N } = \sum _ { n = 1 } ^ { N } n ^ { 5 }\). Using the identity $$\left( n + \frac { 1 } { 2 } \right) ^ { 6 } - \left( n - \frac { 1 } { 2 } \right) ^ { 6 } \equiv 6 n ^ { 5 } + 5 n ^ { 3 } + \frac { 3 } { 8 } n$$ find \(S _ { N }\) in terms of \(N\). [You need not simplify your result.] Hence find \(\lim _ { N \rightarrow \infty } N ^ { - \lambda } S _ { N }\), for each of the two cases
  1. \(\lambda = 6\),
  2. \(\lambda > 6\).
CAIE FP1 2010 June Q5
5 Let $$I _ { n } = \int _ { 1 } ^ { \mathrm { e } } x ( \ln x ) ^ { n } \mathrm {~d} x$$ where \(n \geqslant 1\). Show that $$I _ { n + 1 } = \frac { 1 } { 2 } \mathrm { e } ^ { 2 } - \frac { 1 } { 2 } ( n + 1 ) I _ { n }$$ Hence prove by induction that, for all positive integers \(n , I _ { n }\) is of the form \(A _ { n } \mathrm { e } ^ { 2 } + B _ { n }\), where \(A _ { n }\) and \(B _ { n }\) are rational numbers.
CAIE FP1 2010 June Q6
6 The equation $$x ^ { 3 } + x - 1 = 0$$ has roots \(\alpha , \beta , \gamma\). Use the relation \(x = \sqrt { } y\) to show that the equation $$y ^ { 3 } + 2 y ^ { 2 } + y - 1 = 0$$ has roots \(\alpha ^ { 2 } , \beta ^ { 2 } , \gamma ^ { 2 }\). Let \(S _ { n } = \alpha ^ { n } + \beta ^ { n } + \gamma ^ { n }\).
  1. Write down the value of \(S _ { 2 }\) and show that \(S _ { 4 } = 2\).
  2. Find the values of \(S _ { 6 }\) and \(S _ { 8 }\).
CAIE FP1 2010 June Q7
7 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have vector equations $$\mathbf { r } = 4 \mathbf { i } - 2 \mathbf { j } + \lambda ( 2 \mathbf { i } + \mathbf { j } - 4 \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = 4 \mathbf { i } - 5 \mathbf { j } + 2 \mathbf { k } + \mu ( \mathbf { i } - \mathbf { j } - \mathbf { k } )$$ respectively.
  1. Show that \(l _ { 1 }\) and \(l _ { 2 }\) intersect.
  2. Find the perpendicular distance from the point \(P\) whose position vector is \(3 \mathbf { i } - 5 \mathbf { j } + 6 \mathbf { k }\) to the plane containing \(l _ { 1 }\) and \(l _ { 2 }\).
  3. Find the perpendicular distance from \(P\) to \(l _ { 1 }\).
CAIE FP1 2010 June Q8
8 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { r r r } 4 & 1 & - 1 \\ - 4 & - 1 & 4 \\ 0 & - 1 & 5 \end{array} \right)$$ Given that one eigenvector of \(\mathbf { A }\) is \(\left( \begin{array} { r } 1 \\ - 2 \\ - 1 \end{array} \right)\), find the corresponding eigenvalue. Given also that another eigenvalue of \(\mathbf { A }\) is 4, find a corresponding eigenvector. Given further that \(\left( \begin{array} { r } 1 \\ - 4 \\ - 1 \end{array} \right)\) is an eigenvector of \(\mathbf { A }\), with corresponding eigenvalue 1 , find matrices \(\mathbf { P }\) and \(\mathbf { Q }\), together with a diagonal matrix \(\mathbf { D }\), such that \(\mathbf { A } ^ { 5 } = \mathbf { P D Q }\).
CAIE FP1 2010 June Q9
9
  1. Write down the five fifth roots of unity.
  2. Hence find all the roots of the equation $$z ^ { 5 } + 16 + ( 16 \sqrt { } 3 ) i = 0$$ giving answers in the form \(r \mathrm { e } ^ { \mathrm { i } q \pi }\), where \(r > 0\) and \(q\) is a rational number. Show these roots on an Argand diagram. Let \(w\) be a root of the equation in part (ii).
  3. Show that $$\sum _ { k = 0 } ^ { 4 } \left( \frac { w } { 2 } \right) ^ { k } = \frac { 3 + \mathrm { i } \sqrt { } 3 } { 2 - w }$$
  4. Identify the root for which \(| 2 - w |\) is least.