CAIE Further Paper 1 2023 November — Question 4

Exam BoardCAIE
ModuleFurther Paper 1 (Further Paper 1)
Year2023
SessionNovember
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicVectors: Lines & Planes

4 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations $$\mathbf { r } = - 2 \mathbf { i } - 3 \mathbf { j } - 5 \mathbf { k } + \lambda ( - 4 \mathbf { i } + 3 \mathbf { j } + 5 \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = 2 \mathbf { i } - 2 \mathbf { j } + 3 \mathbf { k } + \mu ( 2 \mathbf { i } - 3 \mathbf { j } + \mathbf { k } )$$ respectively.
  1. Find the shortest distance between \(l _ { 1 }\) and \(l _ { 2 }\).
    The plane \(\Pi\) contains \(l _ { 1 }\) and the point with position vector \(- \mathbf { i } - 3 \mathbf { j } - 4 \mathbf { k }\).
  2. Find an equation of \(\Pi\), giving your answer in the form \(a x + b y + c z = d\).

4 The lines $l _ { 1 }$ and $l _ { 2 }$ have equations

$$\mathbf { r } = - 2 \mathbf { i } - 3 \mathbf { j } - 5 \mathbf { k } + \lambda ( - 4 \mathbf { i } + 3 \mathbf { j } + 5 \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = 2 \mathbf { i } - 2 \mathbf { j } + 3 \mathbf { k } + \mu ( 2 \mathbf { i } - 3 \mathbf { j } + \mathbf { k } )$$

respectively.\\
(a) Find the shortest distance between $l _ { 1 }$ and $l _ { 2 }$.\\

The plane $\Pi$ contains $l _ { 1 }$ and the point with position vector $- \mathbf { i } - 3 \mathbf { j } - 4 \mathbf { k }$.\\
(b) Find an equation of $\Pi$, giving your answer in the form $a x + b y + c z = d$.\\

\hfill \mbox{\textit{CAIE Further Paper 1 2023 Q4}}