CAIE FP1 2010 June — Question 3

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2010
SessionJune
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicVolumes of Revolution

3 At any point \(( x , y )\) on the curve \(C\), $$\frac { \mathrm { d } x } { \mathrm {~d} t } = t \sqrt { } \left( t ^ { 2 } + 4 \right) \quad \text { and } \quad \frac { \mathrm { d } y } { \mathrm {~d} t } = - t \sqrt { } \left( 4 - t ^ { 2 } \right)$$ where the parameter \(t\) is such that \(0 \leqslant t \leqslant 2\). Show that the length of \(C\) is \(4 \sqrt { } 2\). Given that \(y = 0\) when \(t = 2\), determine the area of the surface generated when \(C\) is rotated through one complete revolution about the \(x\)-axis, leaving your answer in an exact form.

3 At any point $( x , y )$ on the curve $C$,

$$\frac { \mathrm { d } x } { \mathrm {~d} t } = t \sqrt { } \left( t ^ { 2 } + 4 \right) \quad \text { and } \quad \frac { \mathrm { d } y } { \mathrm {~d} t } = - t \sqrt { } \left( 4 - t ^ { 2 } \right)$$

where the parameter $t$ is such that $0 \leqslant t \leqslant 2$. Show that the length of $C$ is $4 \sqrt { } 2$.

Given that $y = 0$ when $t = 2$, determine the area of the surface generated when $C$ is rotated through one complete revolution about the $x$-axis, leaving your answer in an exact form.

\hfill \mbox{\textit{CAIE FP1 2010 Q3}}