CAIE FP1 2010 June — Question 8

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2010
SessionJune
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicInvariant lines and eigenvalues and vectors

8 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { r r r } 4 & 1 & - 1 \\ - 4 & - 1 & 4 \\ 0 & - 1 & 5 \end{array} \right)$$ Given that one eigenvector of \(\mathbf { A }\) is \(\left( \begin{array} { r } 1 \\ - 2 \\ - 1 \end{array} \right)\), find the corresponding eigenvalue. Given also that another eigenvalue of \(\mathbf { A }\) is 4, find a corresponding eigenvector. Given further that \(\left( \begin{array} { r } 1 \\ - 4 \\ - 1 \end{array} \right)\) is an eigenvector of \(\mathbf { A }\), with corresponding eigenvalue 1 , find matrices \(\mathbf { P }\) and \(\mathbf { Q }\), together with a diagonal matrix \(\mathbf { D }\), such that \(\mathbf { A } ^ { 5 } = \mathbf { P D Q }\).

8 The matrix $\mathbf { A }$ is given by

$$\mathbf { A } = \left( \begin{array} { r r r } 
4 & 1 & - 1 \\
- 4 & - 1 & 4 \\
0 & - 1 & 5
\end{array} \right)$$

Given that one eigenvector of $\mathbf { A }$ is $\left( \begin{array} { r } 1 \\ - 2 \\ - 1 \end{array} \right)$, find the corresponding eigenvalue.

Given also that another eigenvalue of $\mathbf { A }$ is 4, find a corresponding eigenvector.

Given further that $\left( \begin{array} { r } 1 \\ - 4 \\ - 1 \end{array} \right)$ is an eigenvector of $\mathbf { A }$, with corresponding eigenvalue 1 , find matrices $\mathbf { P }$ and $\mathbf { Q }$, together with a diagonal matrix $\mathbf { D }$, such that $\mathbf { A } ^ { 5 } = \mathbf { P D Q }$.

\hfill \mbox{\textit{CAIE FP1 2010 Q8}}