CAIE FP1 2010 June — Question 1

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2010
SessionJune
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicImplicit equations and differentiation

1 The variables \(x\) and \(y\) are such that \(y = - 1\) when \(x = 1\) and $$x ^ { 2 } + y ^ { 2 } + \left( \frac { \mathrm { d } y } { \mathrm {~d} x } \right) ^ { 3 } = 29$$ Find the values of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) when \(x = 1\).

1 The variables $x$ and $y$ are such that $y = - 1$ when $x = 1$ and

$$x ^ { 2 } + y ^ { 2 } + \left( \frac { \mathrm { d } y } { \mathrm {~d} x } \right) ^ { 3 } = 29$$

Find the values of $\frac { \mathrm { d } y } { \mathrm {~d} x }$ and $\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }$ when $x = 1$.

\hfill \mbox{\textit{CAIE FP1 2010 Q1}}