CAIE Further Paper 1 2022 November — Question 4

Exam BoardCAIE
ModuleFurther Paper 1 (Further Paper 1)
Year2022
SessionNovember
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicVectors: Lines & Planes

4 The plane \(\Pi\) contains the lines \(\mathbf { r } = 3 \mathbf { i } - 2 \mathbf { j } + \mathbf { k } + \lambda ( - \mathbf { i } + 2 \mathbf { j } + \mathbf { k } )\) and \(\mathbf { r } = 4 \mathbf { i } + 4 \mathbf { j } + 2 \mathbf { k } + \mu ( 3 \mathbf { i } + 2 \mathbf { j } - \mathbf { k } )\).
  1. Find a Cartesian equation of \(\Pi\), giving your answer in the form \(a x + b y + c z = d\).
    The line \(l\) passes through the point \(P\) with position vector \(2 \mathbf { i } + 3 \mathbf { j } + \mathbf { k }\) and is parallel to the vector \(\mathbf { j } + \mathbf { k }\).
  2. Find the acute angle between \(I\) and \(\Pi\).
  3. Find the position vector of the foot of the perpendicular from \(P\) to \(\Pi\).

4 The plane $\Pi$ contains the lines $\mathbf { r } = 3 \mathbf { i } - 2 \mathbf { j } + \mathbf { k } + \lambda ( - \mathbf { i } + 2 \mathbf { j } + \mathbf { k } )$ and $\mathbf { r } = 4 \mathbf { i } + 4 \mathbf { j } + 2 \mathbf { k } + \mu ( 3 \mathbf { i } + 2 \mathbf { j } - \mathbf { k } )$.\\
(a) Find a Cartesian equation of $\Pi$, giving your answer in the form $a x + b y + c z = d$.\\

The line $l$ passes through the point $P$ with position vector $2 \mathbf { i } + 3 \mathbf { j } + \mathbf { k }$ and is parallel to the vector $\mathbf { j } + \mathbf { k }$.\\
(b) Find the acute angle between $I$ and $\Pi$.\\

(c) Find the position vector of the foot of the perpendicular from $P$ to $\Pi$.\\

\hfill \mbox{\textit{CAIE Further Paper 1 2022 Q4}}