CAIE FP1 2010 June — Question 9

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2010
SessionJune
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicComplex numbers 2

9
  1. Write down the five fifth roots of unity.
  2. Hence find all the roots of the equation $$z ^ { 5 } + 16 + ( 16 \sqrt { } 3 ) i = 0$$ giving answers in the form \(r \mathrm { e } ^ { \mathrm { i } q \pi }\), where \(r > 0\) and \(q\) is a rational number. Show these roots on an Argand diagram. Let \(w\) be a root of the equation in part (ii).
  3. Show that $$\sum _ { k = 0 } ^ { 4 } \left( \frac { w } { 2 } \right) ^ { k } = \frac { 3 + \mathrm { i } \sqrt { } 3 } { 2 - w }$$
  4. Identify the root for which \(| 2 - w |\) is least.

9 (i) Write down the five fifth roots of unity.\\
(ii) Hence find all the roots of the equation

$$z ^ { 5 } + 16 + ( 16 \sqrt { } 3 ) i = 0$$

giving answers in the form $r \mathrm { e } ^ { \mathrm { i } q \pi }$, where $r > 0$ and $q$ is a rational number. Show these roots on an Argand diagram.

Let $w$ be a root of the equation in part (ii).\\
(iii) Show that

$$\sum _ { k = 0 } ^ { 4 } \left( \frac { w } { 2 } \right) ^ { k } = \frac { 3 + \mathrm { i } \sqrt { } 3 } { 2 - w }$$

(iv) Identify the root for which $| 2 - w |$ is least.

\hfill \mbox{\textit{CAIE FP1 2010 Q9}}