Questions — CAIE (7279 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE FP1 2012 June Q3
6 marks Standard +0.3
3 Given that \(\mathrm { f } ( r ) = \frac { 1 } { ( r + 1 ) ( r + 2 ) }\), show that $$\mathrm { f } ( r - 1 ) - \mathrm { f } ( r ) = \frac { 2 } { r ( r + 1 ) ( r + 2 ) }$$ Hence find \(\sum _ { r = 1 } ^ { n } \frac { 1 } { r ( r + 1 ) ( r + 2 ) }\). Deduce the value of \(\sum _ { r = 1 } ^ { \infty } \frac { 1 } { r ( r + 1 ) ( r + 2 ) }\).
CAIE FP1 2012 June Q4
9 marks Standard +0.8
4 The curve \(C\) has polar equation \(r = 2 + 2 \cos \theta\), for \(0 \leqslant \theta \leqslant \pi\). Sketch the graph of \(C\). Find the area of the region \(R\) enclosed by \(C\) and the initial line. The half-line \(\theta = \frac { 1 } { 5 } \pi\) divides \(R\) into two parts. Find the area of each part, correct to 3 decimal places.
CAIE FP1 2012 June Q5
9 marks Standard +0.3
5 A matrix \(\mathbf { A }\) has eigenvalues \(- 1,1\) and 2 , with corresponding eigenvectors $$\left( \begin{array} { r } 0 \\ 1 \\ - 2 \end{array} \right) , \quad \left( \begin{array} { r } - 1 \\ - 1 \\ 3 \end{array} \right) \quad \text { and } \quad \left( \begin{array} { r } 2 \\ - 3 \\ 5 \end{array} \right) ,$$ respectively. Find \(\mathbf { A }\).
CAIE FP1 2012 June Q6
9 marks Challenging +1.2
6 Write down the values of \(\theta\), in the interval \(0 \leqslant \theta < 2 \pi\), for which \(\cos \theta + \mathrm { i } \sin \theta\) is a fifth root of unity. By writing the equation \(( z + 1 ) ^ { 5 } = z ^ { 5 }\) in the form $$\left( \frac { z + 1 } { z } \right) ^ { 5 } = 1$$ show that its roots are $$- \frac { 1 } { 2 } \left\{ 1 + \mathrm { i } \cot \left( \frac { k \pi } { 5 } \right) \right\} , \quad k = 1,2,3,4$$
CAIE FP1 2012 June Q7
10 marks Challenging +1.2
7 The linear transformations \(\mathrm { T } _ { 1 } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) and \(\mathrm { T } _ { 2 } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) are represented by the matrices $$\mathbf { M } _ { 1 } = \left( \begin{array} { r r r r } 1 & 1 & 1 & 4 \\ 2 & 1 & 4 & 11 \\ 3 & 4 & 1 & 9 \\ 4 & - 3 & 18 & 37 \end{array} \right) \quad \text { and } \quad \mathbf { M } _ { 2 } = \left( \begin{array} { r r r r } 1 & 1 & 1 & - 1 \\ 2 & 3 & 0 & 1 \\ 3 & 4 & 1 & 0 \\ 4 & 5 & 2 & 0 \end{array} \right)$$ respectively. The null space of \(\mathrm { T } _ { 1 }\) is denoted by \(K _ { 1 }\) and the null space of \(\mathrm { T } _ { 2 }\) is denoted by \(K _ { 2 }\). Show that the dimension of \(K _ { 1 }\) is 2 and that the dimension of \(K _ { 2 }\) is 1 . Find the basis of \(K _ { 1 }\) which has the form \(\left\{ \left( \begin{array} { c } p \\ q \\ 1 \\ 0 \end{array} \right) , \left( \begin{array} { c } r \\ s \\ 0 \\ 1 \end{array} \right) \right\}\) and show that \(K _ { 2 }\) is a subspace of \(K _ { 1 }\).
CAIE FP1 2012 June Q8
11 marks Standard +0.8
8 Find the particular solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 5 y = 10 \mathrm { e } ^ { - 2 x }$$ given that \(y = 5\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 1\) when \(x = 0\).
CAIE FP1 2012 June Q9
11 marks Standard +0.3
9 The curve \(C\) has equation $$y = \frac { 2 x ^ { 2 } + 2 x + 3 } { x ^ { 2 } + 2 }$$ Show that, for all \(x , 1 \leqslant y \leqslant \frac { 5 } { 2 }\). Find the coordinates of the turning points on \(C\). Find the equation of the asymptote of \(C\). Sketch the graph of \(C\), stating the coordinates of any intersections with the \(y\)-axis and the asymptote.
CAIE FP1 2012 June Q10
11 marks Challenging +1.2
10 The curve \(C\) has equation $$y = 2 \left( \frac { x } { 3 } \right) ^ { \frac { 3 } { 2 } }$$ where \(0 \leqslant x \leqslant 3\). Show that the arc length of \(C\) is \(2 ( 2 \sqrt { 2 } - 1 )\). Find the coordinates of the centroid of the region enclosed by \(C\), the \(x\)-axis and the line \(x = 3\).
CAIE FP1 2012 June Q11 EITHER
Challenging +1.8
Show that $$\int _ { 0 } ^ { \pi } \mathrm { e } ^ { x } \sin x \mathrm {~d} x = \frac { 1 + \mathrm { e } ^ { \pi } } { 2 }$$ Given that $$I _ { n } = \int _ { 0 } ^ { \pi } \mathrm { e } ^ { x } \sin ^ { n } x \mathrm {~d} x$$ show that, for \(n \geqslant 2\), $$I _ { n } = n ( n - 1 ) \int _ { 0 } ^ { \pi } \mathrm { e } ^ { x } \cos ^ { 2 } x \sin ^ { n - 2 } x \mathrm {~d} x - n I _ { n }$$ and deduce that $$\left( n ^ { 2 } + 1 \right) I _ { n } = n ( n - 1 ) I _ { n - 2 } .$$ A curve has equation \(y = \mathrm { e } ^ { x } \sin ^ { 5 } x\). Find, in an exact form, the mean value of \(y\) over the interval \(0 \leqslant x \leqslant \pi\).
CAIE FP1 2012 June Q11 OR
Challenging +1.2
The position vectors of the points \(A , B , C , D\) are $$2 \mathbf { i } + 4 \mathbf { j } - 3 \mathbf { k } , \quad - 2 \mathbf { i } + 5 \mathbf { j } - 4 \mathbf { k } , \quad \mathbf { i } + 4 \mathbf { j } + \mathbf { k } , \quad \mathbf { i } + 5 \mathbf { j } + m \mathbf { k }$$ respectively, where \(m\) is an integer. It is given that the shortest distance between the line through \(A\) and \(B\) and the line through \(C\) and \(D\) is 3 . Show that the only possible value of \(m\) is 2 . Find the shortest distance of \(D\) from the line through \(A\) and \(C\). Show that the acute angle between the planes \(A C D\) and \(B C D\) is \(\cos ^ { - 1 } \left( \frac { 1 } { \sqrt { } 3 } \right)\). \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }
CAIE FP1 2012 June Q7
10 marks Challenging +1.2
7 The linear transformations \(\mathrm { T } _ { 1 } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) and \(\mathrm { T } _ { 2 } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) are represented by the matrices $$\mathbf { M } _ { 1 } = \left( \begin{array} { r r r r } 1 & 1 & 1 & 4 \\ 2 & 1 & 4 & 11 \\ 3 & 4 & 1 & 9 \\ 4 & - 3 & 18 & 37 \end{array} \right) \quad \text { and } \quad \mathbf { M } _ { 2 } = \left( \begin{array} { r r r r } 1 & 1 & 1 & - 1 \\ 2 & 3 & 0 & 1 \\ 3 & 4 & 1 & 0 \\ 4 & 5 & 2 & 0 \end{array} \right)$$ respectively. The null space of \(\mathrm { T } _ { 1 }\) is denoted by \(K _ { 1 }\) and the null space of \(\mathrm { T } _ { 2 }\) is denoted by \(K _ { 2 }\). Show that the dimension of \(K _ { 1 }\) is 2 and that the dimension of \(K _ { 2 }\) is 1 . Find the basis of \(K _ { 1 }\) which has the form \(\left\{ \left( \begin{array} { c } p \\ q \\ 1 \\ 0 \end{array} \right) , \left( \begin{array} { l } r \\ s \\ 0 \\ 1 \end{array} \right) \right\}\) and show that \(K _ { 2 }\) is a subspace of \(K _ { 1 }\).
CAIE FP1 2012 June Q11 OR
Challenging +1.2
The position vectors of the points \(A , B , C , D\) are $$2 \mathbf { i } + 4 \mathbf { j } - 3 \mathbf { k } , \quad - 2 \mathbf { i } + 5 \mathbf { j } - 4 \mathbf { k } , \quad \mathbf { i } + 4 \mathbf { j } + \mathbf { k } , \quad \mathbf { i } + 5 \mathbf { j } + m \mathbf { k } ,$$ respectively, where \(m\) is an integer. It is given that the shortest distance between the line through \(A\) and \(B\) and the line through \(C\) and \(D\) is 3 . Show that the only possible value of \(m\) is 2 . Find the shortest distance of \(D\) from the line through \(A\) and \(C\). Show that the acute angle between the planes \(A C D\) and \(B C D\) is \(\cos ^ { - 1 } \left( \frac { 1 } { \sqrt { } 3 } \right)\). \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }
CAIE FP1 2012 June Q1
5 marks Standard +0.8
1 Find the sum of the first \(n\) terms of the series $$\frac { 1 } { 1 \times 3 } + \frac { 1 } { 2 \times 4 } + \frac { 1 } { 3 \times 5 } + \ldots$$ and deduce the sum to infinity.
CAIE FP1 2012 June Q2
5 marks Standard +0.3
2 For the sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\), it is given that \(u _ { 1 } = 1\) and \(u _ { r + 1 } = \frac { 3 u _ { r } - 2 } { 4 }\) for all \(r\). Prove by mathematical induction that \(u _ { n } = 4 \left( \frac { 3 } { 4 } \right) ^ { n } - 2\), for all positive integers \(n\).
CAIE FP1 2012 June Q3
8 marks Standard +0.3
3 The curve \(C\) has equation $$x y + ( x + y ) ^ { 3 } = 1$$ Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \frac { 3 } { 4 }\) at the point \(A ( 1,0 )\) on \(C\). Find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at \(A\).
CAIE FP1 2012 June Q4
8 marks Challenging +1.2
4 Let $$I _ { n } = \int _ { 1 } ^ { \mathrm { e } } x ^ { 2 } ( \ln x ) ^ { n } \mathrm {~d} x$$ for \(n \geqslant 0\). Show that, for all \(n \geqslant 1\), $$I _ { n } = \frac { 1 } { 3 } \mathrm { e } ^ { 3 } - \frac { 1 } { 3 } n I _ { n - 1 }$$ Find the exact value of \(I _ { 3 }\).
CAIE FP1 2012 June Q5
9 marks Standard +0.3
5 The matrix \(\mathbf { A }\) has an eigenvalue \(\lambda\) with corresponding eigenvector \(\mathbf { e }\). Prove that the matrix \(( \mathbf { A } + k \mathbf { I } )\), where \(k\) is a real constant and \(\mathbf { I }\) is the identity matrix, has an eigenvalue ( \(\lambda + k\) ) with corresponding eigenvector \(\mathbf { e }\). The matrix \(\mathbf { B }\) is given by $$\mathbf { B } = \left( \begin{array} { r r r } 2 & 2 & - 3 \\ 2 & 2 & 3 \\ - 3 & 3 & 3 \end{array} \right) .$$ Two of the eigenvalues of \(\mathbf { B }\) are - 3 and 4 . Find corresponding eigenvectors. Given that \(\left( \begin{array} { r } 1 \\ - 1 \\ - 2 \end{array} \right)\) is an eigenvector of \(\mathbf { B }\), find the corresponding eigenvalue. Hence find the eigenvalues of \(\mathbf { C }\), where $$\mathbf { C } = \left( \begin{array} { r r r } - 1 & 2 & - 3 \\ 2 & - 1 & 3 \\ - 3 & 3 & 0 \end{array} \right) ,$$ and state corresponding eigenvectors.
CAIE FP1 2012 June Q6
9 marks Standard +0.3
6 The curve \(C\) has equation \(y = \frac { x ^ { 2 } } { x - 2 }\). Find the equations of the asymptotes of \(C\). Find the coordinates of the turning points on \(C\). Draw a sketch of \(C\).
CAIE FP1 2012 June Q7
10 marks Challenging +1.8
7 Expand \(\left( z + \frac { 1 } { z } \right) ^ { 4 } \left( z - \frac { 1 } { z } \right) ^ { 2 }\) and, by substituting \(z = \cos \theta + \mathrm { i } \sin \theta\), find integers \(p , q , r , s\) such that $$64 \sin ^ { 2 } \theta \cos ^ { 4 } \theta = p + q \cos 2 \theta + r \cos 4 \theta + s \cos 6 \theta$$ Using the substitution \(x = 2 \cos \theta\), show that $$\int _ { 1 } ^ { 2 } x ^ { 4 } \sqrt { } \left( 4 - x ^ { 2 } \right) \mathrm { d } x = \frac { 4 } { 3 } \pi + \sqrt { } 3$$
CAIE FP1 2012 June Q8
10 marks Challenging +1.2
8 The cubic equation \(x ^ { 3 } - x ^ { 2 } - 3 x - 10 = 0\) has roots \(\alpha , \beta , \gamma\).
  1. Let \(u = - \alpha + \beta + \gamma\). Show that \(u + 2 \alpha = 1\), and hence find a cubic equation having roots \(- \alpha + \beta + \gamma\), \(\alpha - \beta + \gamma , \alpha + \beta - \gamma\).
  2. State the value of \(\alpha \beta \gamma\) and hence find a cubic equation having roots \(\frac { 1 } { \beta \gamma } , \frac { 1 } { \gamma \alpha } , \frac { 1 } { \alpha \beta }\).
CAIE FP1 2012 June Q9
11 marks Standard +0.3
9 The plane \(\Pi _ { 1 }\) has parametric equation $$\mathbf { r } = 2 \mathbf { i } - 3 \mathbf { j } + \mathbf { k } + \lambda ( \mathbf { i } - 2 \mathbf { j } - \mathbf { k } ) + \mu ( \mathbf { i } + 2 \mathbf { j } - 2 \mathbf { k } )$$ Find a cartesian equation of \(\Pi _ { 1 }\). The plane \(\Pi _ { 2 }\) has cartesian equation \(3 x - 2 y - 3 z = 4\). Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\). Find a vector equation of the line of intersection of \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\).
CAIE FP1 2012 June Q10
11 marks Challenging +1.2
10 Find the set of values of \(a\) for which the system of equations $$\begin{aligned} x - 2 y - 2 z & = - 7 \\ 2 x + ( a - 9 ) y - 10 z & = - 11 \\ 3 x - 6 y + 2 a z & = - 29 \end{aligned}$$ has a unique solution. Show that the system has no solution in the case \(a = - 3\). Given that \(a = 5\),
  1. show that the number of solutions is infinite,
  2. find the solution for which \(x + y + z = 2\).
CAIE FP1 2012 June Q11 EITHER
Challenging +1.2
The curve \(C\) has cartesian equation $$\left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } = a ^ { 2 } \left( x ^ { 2 } - y ^ { 2 } \right)$$ where \(a\) is a positive constant. Show that \(C\) has polar equation $$r ^ { 2 } = a ^ { 2 } \cos 2 \theta$$ Sketch \(C\) for \(- \pi < \theta \leqslant \pi\). Find the area of the sector between \(\theta = - \frac { 1 } { 4 } \pi\) and \(\theta = \frac { 1 } { 4 } \pi\). Find the polar coordinates of all points of \(C\) where the tangent is parallel to the initial line.
CAIE FP1 2012 June Q11 OR
Challenging +1.8
Show that the substitution \(y = x z\) reduces the differential equation $$\frac { 1 } { x } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + \left( \frac { 6 } { x } - \frac { 2 } { x ^ { 2 } } \right) \frac { \mathrm { d } y } { \mathrm {~d} x } + \left( \frac { 9 } { x } - \frac { 6 } { x ^ { 2 } } + \frac { 2 } { x ^ { 3 } } \right) y = 169 \sin 2 x$$ to the differential equation $$\frac { \mathrm { d } ^ { 2 } z } { \mathrm {~d} x ^ { 2 } } + 6 \frac { \mathrm {~d} z } { \mathrm {~d} x } + 9 z = 169 \sin 2 x$$ Find the particular solution for \(y\) in terms of \(x\), given that when \(x = 0 , z = - 10\) and \(\frac { \mathrm { d } z } { \mathrm {~d} x } = 5\).
CAIE FP1 2013 June Q1
4 marks Standard +0.3
1 Find the area of the region enclosed by the curve with polar equation \(r = 2 ( 1 + \cos \theta )\), for \(0 \leqslant \theta < 2 \pi\).