| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2012 |
| Session | June |
| Topic | Polar coordinates |
The curve \(C\) has cartesian equation
$$\left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } = a ^ { 2 } \left( x ^ { 2 } - y ^ { 2 } \right)$$
where \(a\) is a positive constant. Show that \(C\) has polar equation
$$r ^ { 2 } = a ^ { 2 } \cos 2 \theta$$
Sketch \(C\) for \(- \pi < \theta \leqslant \pi\).
Find the area of the sector between \(\theta = - \frac { 1 } { 4 } \pi\) and \(\theta = \frac { 1 } { 4 } \pi\).
Find the polar coordinates of all points of \(C\) where the tangent is parallel to the initial line.