CAIE FP1 2012 June — Question 6

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2012
SessionJune
TopicComplex numbers 2

6 Write down the values of \(\theta\), in the interval \(0 \leqslant \theta < 2 \pi\), for which \(\cos \theta + \mathrm { i } \sin \theta\) is a fifth root of unity. By writing the equation \(( z + 1 ) ^ { 5 } = z ^ { 5 }\) in the form $$\left( \frac { z + 1 } { z } \right) ^ { 5 } = 1$$ show that its roots are $$- \frac { 1 } { 2 } \left\{ 1 + \mathrm { i } \cot \left( \frac { k \pi } { 5 } \right) \right\} , \quad k = 1,2,3,4$$