| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2012 |
| Session | June |
| Topic | Complex numbers 2 |
6 Write down the values of \(\theta\), in the interval \(0 \leqslant \theta < 2 \pi\), for which \(\cos \theta + \mathrm { i } \sin \theta\) is a fifth root of unity.
By writing the equation \(( z + 1 ) ^ { 5 } = z ^ { 5 }\) in the form
$$\left( \frac { z + 1 } { z } \right) ^ { 5 } = 1$$
show that its roots are
$$- \frac { 1 } { 2 } \left\{ 1 + \mathrm { i } \cot \left( \frac { k \pi } { 5 } \right) \right\} , \quad k = 1,2,3,4$$