| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2012 |
| Session | June |
| Topic | First order differential equations (integrating factor) |
Show that the substitution \(y = x z\) reduces the differential equation
$$\frac { 1 } { x } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + \left( \frac { 6 } { x } - \frac { 2 } { x ^ { 2 } } \right) \frac { \mathrm { d } y } { \mathrm {~d} x } + \left( \frac { 9 } { x } - \frac { 6 } { x ^ { 2 } } + \frac { 2 } { x ^ { 3 } } \right) y = 169 \sin 2 x$$
to the differential equation
$$\frac { \mathrm { d } ^ { 2 } z } { \mathrm {~d} x ^ { 2 } } + 6 \frac { \mathrm {~d} z } { \mathrm {~d} x } + 9 z = 169 \sin 2 x$$
Find the particular solution for \(y\) in terms of \(x\), given that when \(x = 0 , z = - 10\) and \(\frac { \mathrm { d } z } { \mathrm {~d} x } = 5\).