CAIE FP1 2012 June — Question 5

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2012
SessionJune
TopicInvariant lines and eigenvalues and vectors

5 The matrix \(\mathbf { A }\) has an eigenvalue \(\lambda\) with corresponding eigenvector \(\mathbf { e }\). Prove that the matrix \(( \mathbf { A } + k \mathbf { I } )\), where \(k\) is a real constant and \(\mathbf { I }\) is the identity matrix, has an eigenvalue ( \(\lambda + k\) ) with corresponding eigenvector \(\mathbf { e }\). The matrix \(\mathbf { B }\) is given by $$\mathbf { B } = \left( \begin{array} { r r r } 2 & 2 & - 3
2 & 2 & 3
- 3 & 3 & 3 \end{array} \right) .$$ Two of the eigenvalues of \(\mathbf { B }\) are - 3 and 4 . Find corresponding eigenvectors. Given that \(\left( \begin{array} { r } 1
- 1
- 2 \end{array} \right)\) is an eigenvector of \(\mathbf { B }\), find the corresponding eigenvalue. Hence find the eigenvalues of \(\mathbf { C }\), where $$\mathbf { C } = \left( \begin{array} { r r r } - 1 & 2 & - 3
2 & - 1 & 3
- 3 & 3 & 0 \end{array} \right) ,$$ and state corresponding eigenvectors.