| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2012 |
| Session | June |
| Topic | Sequences and series, recurrence and convergence |
3 Given that \(\mathrm { f } ( r ) = \frac { 1 } { ( r + 1 ) ( r + 2 ) }\), show that
$$\mathrm { f } ( r - 1 ) - \mathrm { f } ( r ) = \frac { 2 } { r ( r + 1 ) ( r + 2 ) }$$
Hence find \(\sum _ { r = 1 } ^ { n } \frac { 1 } { r ( r + 1 ) ( r + 2 ) }\).
Deduce the value of \(\sum _ { r = 1 } ^ { \infty } \frac { 1 } { r ( r + 1 ) ( r + 2 ) }\).