Questions — CAIE P2 (699 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE P2 2011 November Q3
3
\includegraphics[max width=\textwidth, alt={}, center]{55794ceb-2d52-459c-8724-6a6a29ab159a-2_705_737_591_703} The diagram shows the part of the curve \(y = \frac { 1 } { 2 } \tan 2 x\) for \(0 \leqslant x \leqslant \frac { 1 } { 2 } \pi\). Find the \(x\)-coordinates of the points on this part of the curve at which the gradient is 4 .
CAIE P2 2011 November Q4
4 Solve the equation \(3 ^ { 2 x } - 7 \left( 3 ^ { x } \right) + 10 = 0\), giving your answers correct to 3 significant figures.
CAIE P2 2011 November Q5
5 The polynomial \(4 x ^ { 3 } + a x ^ { 2 } + 9 x + 9\), where \(a\) is a constant, is denoted by \(\mathrm { p } ( x )\). It is given that when \(\mathrm { p } ( x )\) is divided by \(( 2 x - 1 )\) the remainder is 10 .
  1. Find the value of \(a\) and hence verify that ( \(x - 3\) ) is a factor of \(\mathrm { p } ( x )\).
  2. When \(a\) has this value, solve the equation \(\mathrm { p } ( x ) = 0\).
CAIE P2 2011 November Q6
6
  1. Verify by calculation that the cubic equation $$x ^ { 3 } - 2 x ^ { 2 } + 5 x - 3 = 0$$ has a root that lies between \(x = 0.7\) and \(x = 0.8\).
  2. Show that this root also satisfies an equation of the form $$x = \frac { a x ^ { 2 } + 3 } { x ^ { 2 } + b }$$ where the values of \(a\) and \(b\) are to be found.
  3. With these values of \(a\) and \(b\), use the iterative formula $$x _ { n + 1 } = \frac { a x _ { n } ^ { 2 } + 3 } { x _ { n } ^ { 2 } + b }$$ to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
CAIE P2 2011 November Q7
7 The parametric equations of a curve are $$x = \mathrm { e } ^ { 3 t } , \quad y = t ^ { 2 } \mathrm { e } ^ { t } + 3$$
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { t ( t + 2 ) } { 3 \mathrm { e } ^ { 2 t } }\).
  2. Show that the tangent to the curve at the point \(( 1,3 )\) is parallel to the \(x\)-axis.
  3. Find the exact coordinates of the other point on the curve at which the tangent is parallel to the \(x\)-axis.
CAIE P2 2011 November Q8
8
  1. By first expanding \(\cos ( 2 x + x )\), show that $$\cos 3 x \equiv 4 \cos ^ { 3 } x - 3 \cos x$$
  2. Hence show that $$\int _ { 0 } ^ { \frac { 1 } { 6 } \pi } \left( 2 \cos ^ { 3 } x - \cos x \right) d x = \frac { 5 } { 12 }$$
CAIE P2 2011 November Q1
1 Solve the inequality \(| x + 2 | > \left| \frac { 1 } { 2 } x - 2 \right|\).
CAIE P2 2011 November Q2
2 Use logarithms to solve the equation \(4 ^ { x + 1 } = 5 ^ { 2 x - 3 }\), giving your answer correct to 3 significant figures.
CAIE P2 2011 November Q3
3
\includegraphics[max width=\textwidth, alt={}, center]{322eb555-d40a-460c-8c71-5780f5772bcd-2_535_1041_573_552} The diagram shows the curve \(y = x - 2 \ln x\) and its minimum point \(M\).
  1. Find the \(x\)-coordinate of \(M\).
  2. Use the trapezium rule with three intervals to estimate the value of $$\int _ { 2 } ^ { 5 } ( x - 2 \ln x ) \mathrm { d } x$$ giving your answer correct to 2 decimal places.
  3. State, with a reason, whether the trapezium rule gives an under-estimate or an over-estimate of the true value of the integral in part (ii).
CAIE P2 2011 November Q4
4 Find the exact value of the positive constant \(k\) for which $$\int _ { 0 } ^ { k } e ^ { 4 x } d x = \int _ { 0 } ^ { 2 k } e ^ { x } d x$$
CAIE P2 2011 November Q5
5
  1. By sketching a suitable pair of graphs, show that the equation $$\frac { 1 } { x } = \sin x$$ where \(x\) is in radians, has only one root for \(0 < x \leqslant \frac { 1 } { 2 } \pi\).
  2. Verify by calculation that this root lies between \(x = 1.1\) and \(x = 1.2\).
  3. Use the iterative formula \(x _ { n + 1 } = \frac { 1 } { \sin x _ { n } }\) to determine this root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
CAIE P2 2011 November Q6
6 The parametric equations of a curve are $$x = 1 + 2 \sin ^ { 2 } \theta , \quad y = 4 \tan \theta$$
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { \sin \theta \cos ^ { 3 } \theta }\).
  2. Find the equation of the tangent to the curve at the point where \(\theta = \frac { 1 } { 4 } \pi\), giving your answer in the form \(y = m x + c\).
CAIE P2 2011 November Q7
7 The polynomial \(a x ^ { 3 } - 3 x ^ { 2 } - 11 x + b\), where \(a\) and \(b\) are constants, is denoted by \(\mathrm { p } ( x )\). It is given that \(( x + 2 )\) is a factor of \(\mathrm { p } ( x )\), and that when \(\mathrm { p } ( x )\) is divided by \(( x + 1 )\) the remainder is 12 .
  1. Find the values of \(a\) and \(b\).
  2. When \(a\) and \(b\) have these values, factorise \(\mathrm { p } ( x )\) completely.
CAIE P2 2011 November Q8
8
  1. Express \(5 \cos \theta - 3 \sin \theta\) in the form \(R \cos ( \theta + \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\), giving the exact value of \(R\) and the value of \(\alpha\) correct to 2 decimal places.
  2. Hence solve the equation $$5 \cos \theta - 3 \sin \theta = 4$$ giving all solutions in the interval \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
  3. Write down the least value of \(15 \cos \theta - 9 \sin \theta\) as \(\theta\) varies.
CAIE P2 2011 November Q1
1 Find the gradient of the curve \(y = \ln ( 5 x + 1 )\) at the point where \(x = 4\).
CAIE P2 2011 November Q2
2 Solve the inequality \(| 2 x - 3 | \leqslant | 3 x |\).
CAIE P2 2011 November Q3
3 Solve the equation \(2 \ln ( x + 3 ) - \ln x = \ln ( 2 x - 2 )\).
CAIE P2 2011 November Q4
4
  1. Express \(\cos ^ { 2 } x\) in terms of \(\cos 2 x\).
  2. Hence show that $$\int _ { 0 } ^ { \frac { 1 } { 6 } \pi } \left( \cos ^ { 2 } x + \sin 2 x \right) \mathrm { d } x = \frac { 1 } { 8 } \sqrt { } 3 + \frac { 1 } { 12 } \pi + \frac { 1 } { 4 }$$
CAIE P2 2011 November Q5
5 Solve the equation \(5 \sec ^ { 2 } 2 \theta = \tan 2 \theta + 9\), giving all solutions in the interval \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).
CAIE P2 2011 November Q6
6
  1. The polynomial \(x ^ { 4 } + a x ^ { 3 } - x ^ { 2 } + b x + 2\), where \(a\) and \(b\) are constants, is denoted by \(\mathrm { p } ( x )\). It is given that \(( x - 1 )\) and \(( x + 2 )\) are factors of \(\mathrm { p } ( x )\). Find the values of \(a\) and \(b\).
  2. When \(a\) and \(b\) have these values, find the quotient when \(\mathrm { p } ( x )\) is divided by \(x ^ { 2 } + x - 2\).
CAIE P2 2011 November Q7
7
\includegraphics[max width=\textwidth, alt={}, center]{e82fee05-0c55-4fe2-b781-e5e82186c153-2_608_999_1430_571} The diagram shows the curve \(y = ( x - 4 ) \mathrm { e } ^ { \frac { 1 } { 2 } x }\). The curve has a gradient of 3 at the point \(P\).
  1. Show that the \(x\)-coordinate of \(P\) satisfies the equation $$x = 2 + 6 \mathrm { e } ^ { - \frac { 1 } { 2 } x }$$
  2. Verify that the equation in part (i) has a root between \(x = 3.1\) and \(x = 3.3\).
  3. Use the iterative formula \(x _ { n + 1 } = 2 + 6 \mathrm { e } ^ { - \frac { 1 } { 2 } x _ { n } }\) to determine this root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
CAIE P2 2011 November Q8
8 The equation of a curve is \(2 x ^ { 2 } - 3 x - 3 y + y ^ { 2 } = 6\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 4 x - 3 } { 3 - 2 y }\).
  2. Find the coordinates of the two points on the curve at which the gradient is - 1 .
CAIE P2 2012 November Q1
1 Solve the inequality \(| x - 2 | \geqslant | x + 5 |\).
CAIE P2 2012 November Q2
2 Use logarithms to solve the equation \(5 ^ { x } = 3 ^ { 2 x - 1 }\), giving your answer correct to 3 significant figures.
CAIE P2 2012 November Q3
3 Solve the equation $$2 \cos 2 \theta = 4 \cos \theta - 3$$ for \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).