Questions — CAIE FP1 (549 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE FP1 2012 June Q11 EITHER
The curve \(C\) has cartesian equation $$\left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } = a ^ { 2 } \left( x ^ { 2 } - y ^ { 2 } \right)$$ where \(a\) is a positive constant. Show that \(C\) has polar equation $$r ^ { 2 } = a ^ { 2 } \cos 2 \theta$$ Sketch \(C\) for \(- \pi < \theta \leqslant \pi\). Find the area of the sector between \(\theta = - \frac { 1 } { 4 } \pi\) and \(\theta = \frac { 1 } { 4 } \pi\). Find the polar coordinates of all points of \(C\) where the tangent is parallel to the initial line.
CAIE FP1 2012 June Q11 OR
Show that the substitution \(y = x z\) reduces the differential equation $$\frac { 1 } { x } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + \left( \frac { 6 } { x } - \frac { 2 } { x ^ { 2 } } \right) \frac { \mathrm { d } y } { \mathrm {~d} x } + \left( \frac { 9 } { x } - \frac { 6 } { x ^ { 2 } } + \frac { 2 } { x ^ { 3 } } \right) y = 169 \sin 2 x$$ to the differential equation $$\frac { \mathrm { d } ^ { 2 } z } { \mathrm {~d} x ^ { 2 } } + 6 \frac { \mathrm {~d} z } { \mathrm {~d} x } + 9 z = 169 \sin 2 x$$ Find the particular solution for \(y\) in terms of \(x\), given that when \(x = 0 , z = - 10\) and \(\frac { \mathrm { d } z } { \mathrm {~d} x } = 5\).
CAIE FP1 2013 June Q1
1 Find the area of the region enclosed by the curve with polar equation \(r = 2 ( 1 + \cos \theta )\), for \(0 \leqslant \theta < 2 \pi\).
CAIE FP1 2013 June Q2
2 Prove by mathematical induction that \(5 ^ { 2 n } - 1\) is divisible by 8 for every positive integer \(n\).
CAIE FP1 2013 June Q3
3 The cubic equation \(x ^ { 3 } - 2 x ^ { 2 } - 3 x + 4 = 0\) has roots \(\alpha , \beta , \gamma\). Given that \(c = \alpha + \beta + \gamma\), state the value of \(c\). Use the substitution \(y = c - x\) to find a cubic equation whose roots are \(\alpha + \beta , \beta + \gamma , \gamma + \alpha\). Find a cubic equation whose roots are \(\frac { 1 } { \alpha + \beta } , \frac { 1 } { \beta + \gamma } , \frac { 1 } { \gamma + \alpha }\). Hence evaluate \(\frac { 1 } { ( \alpha + \beta ) ^ { 2 } } + \frac { 1 } { ( \beta + \gamma ) ^ { 2 } } + \frac { 1 } { ( \gamma + \alpha ) ^ { 2 } }\).
CAIE FP1 2013 June Q4
4 Let \(I _ { n } = \int _ { 0 } ^ { 1 } \frac { 1 } { \left( 1 + x ^ { 2 } \right) ^ { n } } \mathrm {~d} x\). Prove that, for every positive integer \(n\), $$2 n I _ { n + 1 } = 2 ^ { - n } + ( 2 n - 1 ) I _ { n }$$ Given that \(I _ { 1 } = \frac { 1 } { 4 } \pi\), find the exact value of \(I _ { 3 }\).
CAIE FP1 2013 June Q5
5 Use the method of differences to show that \(\sum _ { r = 1 } ^ { N } \frac { 1 } { ( 2 r + 1 ) ( 2 r + 3 ) } = \frac { 1 } { 6 } - \frac { 1 } { 2 ( 2 N + 3 ) }\). Deduce that \(\sum _ { r = N + 1 } ^ { 2 N } \frac { 1 } { ( 2 r + 1 ) ( 2 r + 3 ) } < \frac { 1 } { 8 N }\).
CAIE FP1 2013 June Q6
6 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { l l l } 4 & - 5 & 3
3 & - 4 & 3
1 & - 1 & 2 \end{array} \right)$$ Show that \(\mathbf { e } = \left( \begin{array} { l } 1
1
1 \end{array} \right)\) is an eigenvector of \(\mathbf { A }\) and state the corresponding eigenvalue. Find the other two eigenvalues of \(\mathbf { A }\). The matrix \(\mathbf { B }\) is given by $$\mathbf { B } = \left( \begin{array} { r r r } - 1 & 4 & 0
- 1 & 3 & 1
1 & - 1 & 3 \end{array} \right)$$ Show that \(\mathbf { e }\) is an eigenvector of \(\mathbf { B }\) and deduce an eigenvector of the matrix \(\mathbf { A B }\), stating the corresponding eigenvalue.
CAIE FP1 2013 June Q7
7 By considering the binomial expansion of \(\left( z - \frac { 1 } { z } \right) ^ { 6 }\), where \(z = \cos \theta + \mathrm { i } \sin \theta\), express \(\sin ^ { 6 } \theta\) in the form $$\frac { 1 } { 32 } ( p + q \cos 2 \theta + r \cos 4 \theta + s \cos 6 \theta ) ,$$ where \(p , q , r\) and \(s\) are integers to be determined. Hence find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \sin ^ { 6 } \theta \mathrm {~d} \theta\).
CAIE FP1 2013 June Q8
8 The linear transformations \(\mathrm { T } _ { 1 } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) and \(\mathrm { T } _ { 2 } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) are represented by the matrices \(\mathbf { M } _ { 1 }\) and \(\mathbf { M } _ { 2 }\) respectively, where $$\mathbf { M } _ { 1 } = \left( \begin{array} { r r r r } 1 & - 2 & 3 & 5
3 & - 4 & 17 & 33
5 & - 9 & 20 & 36
4 & - 7 & 16 & 29 \end{array} \right) \quad \text { and } \quad \mathbf { M } _ { 2 } = \left( \begin{array} { r r r r } 1 & - 2 & 0 & - 3
2 & - 1 & 0 & 0
4 & - 7 & 1 & - 9
6 & - 10 & 0 & - 14 \end{array} \right) .$$ The null spaces of \(\mathrm { T } _ { 1 }\) and \(\mathrm { T } _ { 2 }\) are denoted by \(K _ { 1 }\) and \(K _ { 2 }\) respectively. Find a basis for \(K _ { 1 }\) and a basis for \(K _ { 2 }\). It is given that \(\mathbf { a } = \left( \begin{array} { l } 1
2
3
4 \end{array} \right)\). The vectors \(\mathbf { x } _ { 1 }\) and \(\mathbf { x } _ { 2 }\) are such that \(\mathbf { M } _ { 1 } \mathbf { x } _ { 1 } = \mathbf { M } _ { 1 } \mathbf { a }\) and \(\mathbf { M } _ { 2 } \mathbf { x } _ { 2 } = \mathbf { M } _ { 2 } \mathbf { a }\). Given that \(\mathbf { x } _ { 1 } - \mathbf { x } _ { 2 } = \left( \begin{array} { c } p
5
7
q \end{array} \right)\), find \(p\) and \(q\).
CAIE FP1 2013 June Q9
9 Find \(x\) in terms of \(t\) given that $$4 \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 4 \frac { \mathrm {~d} x } { \mathrm {~d} t } + x = 6 \mathrm { e } ^ { - 2 t }$$ and that, when \(t = 0 , x = \frac { 5 } { 3 }\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = \frac { 7 } { 6 }\). State \(\lim _ { t \rightarrow \infty } x\).
CAIE FP1 2013 June Q10
10 The curve \(C\) has equation \(y = \frac { 2 x ^ { 2 } - 3 x - 2 } { x ^ { 2 } - 2 x + 1 }\). State the equations of the asymptotes of \(C\). Show that \(y \leqslant \frac { 25 } { 12 }\) at all points of \(C\). Find the coordinates of any stationary points of \(C\). Sketch \(C\), stating the coordinates of any intersections of \(C\) with the coordinate axes and the asymptotes.
CAIE FP1 2013 June Q11 EITHER
The curve \(C\) has equation \(y = 2 \sec x\), for \(0 \leqslant x \leqslant \frac { 1 } { 4 } \pi\). Show that the arc length \(s\) of \(C\) is given by $$S = \int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \left( 2 \sec ^ { 2 } x - 1 \right) d x$$ Find the exact value of \(s\). The surface area generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis is denoted by \(S\). Show that
  1. \(S = 4 \pi \int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \left( 2 \sec ^ { 3 } x - \sec x \right) \mathrm { d } x\),
  2. \(\frac { \mathrm { d } } { \mathrm { d } x } ( \sec x \tan x ) = 2 \sec ^ { 3 } x - \sec x\). Hence find the exact value of \(S\).
CAIE FP1 2013 June Q11 OR
The points \(A , B , C\) and \(D\) have coordinates as follows: $$A ( 2,1 , - 2 ) , \quad B ( 4,1 , - 1 ) , \quad C ( 3 , - 2 , - 1 ) \quad \text { and } \quad D ( 3,6,2 ) .$$ The plane \(\Pi _ { 1 }\) passes through the points \(A , B\) and \(C\). Find a cartesian equation of \(\Pi _ { 1 }\). Find the area of triangle \(A B C\) and hence, or otherwise, find the volume of the tetrahedron \(A B C D\).
[0pt] [The volume of a tetrahedron is \(\frac { 1 } { 3 } \times\) area of base × perpendicular height.]
The plane \(\Pi _ { 2 }\) passes through the points \(A , B\) and \(D\). Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\). \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }
CAIE FP1 2013 June Q1
1 Let \(\mathrm { f } ( r ) = r ! ( r - 1 )\). Simplify \(\mathrm { f } ( r + 1 ) - \mathrm { f } ( r )\) and hence find \(\sum _ { r = n + 1 } ^ { 2 n } r ! \left( r ^ { 2 } + 1 \right)\).
CAIE FP1 2013 June Q2
2 The roots of the equation \(x ^ { 4 } - 4 x ^ { 2 } + 3 x - 2 = 0\) are \(\alpha , \beta , \gamma\) and \(\delta\); the sum \(\alpha ^ { n } + \beta ^ { n } + \gamma ^ { n } + \delta ^ { n }\) is denoted by \(S _ { n }\). By using the relation \(y = x ^ { 2 }\), or otherwise, show that \(\alpha ^ { 2 } , \beta ^ { 2 } , \gamma ^ { 2 }\) and \(\delta ^ { 2 }\) are the roots of the equation $$y ^ { 4 } - 8 y ^ { 3 } + 12 y ^ { 2 } + 7 y + 4 = 0$$ State the value of \(S _ { 2 }\) and hence show that $$S _ { 8 } = 8 S _ { 6 } - 12 S _ { 4 } - 72 .$$
CAIE FP1 2013 June Q3
3 Prove by mathematical induction that, for every positive integer \(n\), $$\frac { \mathrm { d } ^ { n } } { \mathrm {~d} x ^ { n } } \left( \mathrm { e } ^ { x } \sin x \right) = ( \sqrt { } 2 ) ^ { n } \mathrm { e } ^ { x } \sin \left( x + \frac { 1 } { 4 } n \pi \right)$$
CAIE FP1 2013 June Q4
4 Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \frac { 4 } { 3 }\) at the point \(A ( 1 , - 2 )\) on the curve with equation $$y ^ { 3 } - 3 x ^ { 2 } y + 2 = 0$$ and find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at \(A\).
CAIE FP1 2013 June Q5
5 Show that \(\int _ { 0 } ^ { 1 } x \mathrm { e } ^ { - x ^ { 2 } } \mathrm {~d} x = \frac { 1 } { 2 } - \frac { 1 } { 2 \mathrm { e } }\). Let \(I _ { n } = \int _ { 0 } ^ { 1 } x ^ { n } \mathrm { e } ^ { - x ^ { 2 } } \mathrm {~d} x\). Show that \(I _ { 2 n + 1 } = n I _ { 2 n - 1 } - \frac { 1 } { 2 \mathrm { e } }\) for \(n \geqslant 1\). Find the exact value of \(I _ { 7 }\).
CAIE FP1 2013 June Q6
6 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r r r } - 2 & 5 & 3 & - 1
0 & 1 & - 4 & - 2
6 & - 14 & - 13 & 1
\alpha & \alpha & - 2 \alpha & - 11 \alpha \end{array} \right)$$ and \(\alpha\) is a constant. The null space of T is denoted by \(K _ { 1 }\) when \(\alpha \neq 0\), and by \(K _ { 2 }\) when \(\alpha = 0\). Find a basis for \(K _ { 1 }\) and a basis for \(K _ { 2 }\).
CAIE FP1 2013 June Q7
7 Find the value of the constant \(\lambda\) such that \(\lambda x \mathrm { e } ^ { - x }\) is a particular integral of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 5 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 4 y = 6 \mathrm { e } ^ { - x }$$ Find the solution of the differential equation for which \(y = 2\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 3\) when \(x = 0\).
CAIE FP1 2013 June Q8
8 The curve \(C\) has parametric equations \(x = \frac { 3 } { 2 } t ^ { 2 } , y = t ^ { 3 }\), for \(0 \leqslant t \leqslant 2\). Find the arc length of \(C\). Find the coordinates of the centroid of the region enclosed by \(C\), the \(x\)-axis and the line \(x = 6\).
CAIE FP1 2013 June Q9
9 The square matrix \(\mathbf { A }\) has an eigenvalue \(\lambda\) with corresponding eigenvector \(\mathbf { e }\). The non-singular matrix \(\mathbf { M }\) is of the same order as \(\mathbf { A }\). Show that \(\mathbf { M e }\) is an eigenvector of the matrix \(\mathbf { B }\), where \(\mathbf { B } = \mathbf { M } \mathbf { A } \mathbf { M } ^ { - 1 }\), and that \(\lambda\) is the corresponding eigenvalue. Let $$\mathbf { A } = \left( \begin{array} { r r r } - 1 & 2 & 1
0 & 1 & 4
0 & 0 & 2 \end{array} \right)$$ Write down the eigenvalues of \(\mathbf { A }\) and obtain corresponding eigenvectors. Given that $$\mathbf { M } = \left( \begin{array} { l l l } 1 & 0 & 1
0 & 1 & 0
0 & 0 & 1 \end{array} \right)$$ find the eigenvalues and corresponding eigenvectors of \(\mathbf { B }\).
CAIE FP1 2013 June Q10
10 Use the identity \(2 \sin P \cos Q \equiv \sin ( P + Q ) + \sin ( P - Q )\) to show that $$2 \sin \theta \cos \left( \theta - \frac { 1 } { 4 } \pi \right) \equiv \cos \left( 2 \theta - \frac { 3 } { 4 } \pi \right) + \frac { 1 } { \sqrt { } 2 }$$ A curve has polar equation \(r = 2 \sin \theta \cos \left( \theta - \frac { 1 } { 4 } \pi \right)\), for \(0 \leqslant \theta \leqslant \frac { 3 } { 4 } \pi\). Sketch the curve and state the polar equation of its line of symmetry, justifying your answer. Show that the area of the region enclosed by the curve is \(\frac { 3 } { 8 } ( \pi + 1 )\).
CAIE FP1 2013 June Q11 EITHER
The line \(l _ { 1 }\) passes through the point \(A\) whose position vector is \(4 \mathbf { i } + 7 \mathbf { j } - \mathbf { k }\) and is parallel to the vector \(3 \mathbf { i } + 2 \mathbf { j } - \mathbf { k }\). The line \(l _ { 2 }\) passes through the point \(B\) whose position vector is \(\mathbf { i } + 7 \mathbf { j } + 11 \mathbf { k }\) and is parallel to the vector \(\mathbf { i } - 6 \mathbf { j } - 2 \mathbf { k }\). The points \(P\) on \(l _ { 1 }\) and \(Q\) on \(l _ { 2 }\) are such that \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\). Find the position vectors of \(P\) and \(Q\). Find the shortest distance between the line through \(A\) and \(B\) and the line through \(P\) and \(Q\), giving your answer correct to 3 significant figures.