| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2013 |
| Session | June |
| Topic | Roots of polynomials |
3 The cubic equation \(x ^ { 3 } - 2 x ^ { 2 } - 3 x + 4 = 0\) has roots \(\alpha , \beta , \gamma\). Given that \(c = \alpha + \beta + \gamma\), state the value of \(c\).
Use the substitution \(y = c - x\) to find a cubic equation whose roots are \(\alpha + \beta , \beta + \gamma , \gamma + \alpha\).
Find a cubic equation whose roots are \(\frac { 1 } { \alpha + \beta } , \frac { 1 } { \beta + \gamma } , \frac { 1 } { \gamma + \alpha }\).
Hence evaluate \(\frac { 1 } { ( \alpha + \beta ) ^ { 2 } } + \frac { 1 } { ( \beta + \gamma ) ^ { 2 } } + \frac { 1 } { ( \gamma + \alpha ) ^ { 2 } }\).