| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2013 |
| Session | June |
| Topic | Invariant lines and eigenvalues and vectors |
9 The square matrix \(\mathbf { A }\) has an eigenvalue \(\lambda\) with corresponding eigenvector \(\mathbf { e }\). The non-singular matrix \(\mathbf { M }\) is of the same order as \(\mathbf { A }\). Show that \(\mathbf { M e }\) is an eigenvector of the matrix \(\mathbf { B }\), where \(\mathbf { B } = \mathbf { M } \mathbf { A } \mathbf { M } ^ { - 1 }\), and that \(\lambda\) is the corresponding eigenvalue.
Let
$$\mathbf { A } = \left( \begin{array} { r r r }
- 1 & 2 & 1
0 & 1 & 4
0 & 0 & 2
\end{array} \right)$$
Write down the eigenvalues of \(\mathbf { A }\) and obtain corresponding eigenvectors.
Given that
$$\mathbf { M } = \left( \begin{array} { l l l }
1 & 0 & 1
0 & 1 & 0
0 & 0 & 1
\end{array} \right)$$
find the eigenvalues and corresponding eigenvectors of \(\mathbf { B }\).