| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2013 |
| Session | June |
| Topic | Integration by Substitution |
5 Show that \(\int _ { 0 } ^ { 1 } x \mathrm { e } ^ { - x ^ { 2 } } \mathrm {~d} x = \frac { 1 } { 2 } - \frac { 1 } { 2 \mathrm { e } }\).
Let \(I _ { n } = \int _ { 0 } ^ { 1 } x ^ { n } \mathrm { e } ^ { - x ^ { 2 } } \mathrm {~d} x\). Show that \(I _ { 2 n + 1 } = n I _ { 2 n - 1 } - \frac { 1 } { 2 \mathrm { e } }\) for \(n \geqslant 1\).
Find the exact value of \(I _ { 7 }\).