| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2013 |
| Session | June |
| Topic | Addition & Double Angle Formulae |
7 By considering the binomial expansion of \(\left( z - \frac { 1 } { z } \right) ^ { 6 }\), where \(z = \cos \theta + \mathrm { i } \sin \theta\), express \(\sin ^ { 6 } \theta\) in the form
$$\frac { 1 } { 32 } ( p + q \cos 2 \theta + r \cos 4 \theta + s \cos 6 \theta ) ,$$
where \(p , q , r\) and \(s\) are integers to be determined.
Hence find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \sin ^ { 6 } \theta \mathrm {~d} \theta\).