Questions — CAIE FP1 (549 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE FP1 2010 June Q12 OR
The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M } = \left( \begin{array} { r r r r } 1 & 1 & 5 & 7
3 & 9 & 17 & 25
1 & 7 & 7 & 11
3 & 6 & 16 & 23 \end{array} \right)\).
  1. In either order,
    (a) show that the dimension of \(R\), the range space of T , is equal to 2 ,
    (b) obtain a basis for \(R\).
  2. Show that the vector \(\left( \begin{array} { r } 1
    - 15
    - 17
    - 6 \end{array} \right)\) belongs to \(R\).
  3. It is given that \(\left\{ \mathbf { e } _ { 1 } , \mathbf { e } _ { 2 } \right\}\) is a basis for the null space of T , where \(\mathbf { e } _ { 1 } = \left( \begin{array} { r } 14
    1
    - 3
    0 \end{array} \right)\) and \(\mathbf { e } _ { 2 } = \left( \begin{array} { r } 19
    2
    0
    - 3 \end{array} \right)\). Show that, for all \(\lambda\) and \(\mu\), $$\mathbf { x } = \left( \begin{array} { r } 4
    - 3
    0
    0 \end{array} \right) + \lambda \mathbf { e } _ { 1 } + \mu \mathbf { e } _ { 2 }$$ is a solution of $$\mathbf { M x } = \left( \begin{array} { r } 1
    - 15
    - 17
    - 6 \end{array} \right)$$
  4. Hence find a solution of \(( * )\) of the form \(\left( \begin{array} { c } \alpha
    0
    \gamma
    \delta \end{array} \right)\).
CAIE FP1 2011 June Q1
1 Express \(\frac { 1 } { ( 2 r + 1 ) ( 2 r + 3 ) }\) in partial fractions and hence use the method of differences to find $$\sum _ { r = 1 } ^ { n } \frac { 1 } { ( 2 r + 1 ) ( 2 r + 3 ) }$$ Deduce the value of $$\sum _ { r = 1 } ^ { \infty } \frac { 1 } { ( 2 r + 1 ) ( 2 r + 3 ) }$$
CAIE FP1 2011 June Q2
2 The roots of the equation $$x ^ { 3 } + p x ^ { 2 } + q x + r = 0$$ are \(\frac { \beta } { k } , \beta , k \beta\), where \(p , q , r , k\) and \(\beta\) are non-zero real constants. Show that \(\beta = - \frac { q } { p }\). Deduce that \(r p ^ { 3 } = q ^ { 3 }\).
CAIE FP1 2011 June Q3
3 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M } = \left( \begin{array} { r r r r } 1 & 3 & - 2 & 4
5 & 15 & - 9 & 19
- 2 & - 6 & 3 & - 7
3 & 9 & - 5 & 11 \end{array} \right)\).
  1. Find the rank of \(\mathbf { M }\).
  2. Obtain a basis for the null space of T .
CAIE FP1 2011 June Q4
4 It is given that \(\mathrm { f } ( n ) = 3 ^ { 3 n } + 6 ^ { n - 1 }\).
  1. Show that \(\mathrm { f } ( n + 1 ) + \mathrm { f } ( n ) = 28 \left( 3 ^ { 3 n } \right) + 7 \left( 6 ^ { n - 1 } \right)\).
  2. Hence, or otherwise, prove by mathematical induction that \(\mathrm { f } ( n )\) is divisible by 7 for every positive integer \(n\).
CAIE FP1 2011 June Q5
5 The curve \(C\) has polar equation \(r = 2 \cos 2 \theta\). Sketch the curve for \(0 \leqslant \theta < 2 \pi\). Find the exact area of one loop of the curve.
CAIE FP1 2011 June Q6
6 The line \(l _ { 1 }\) passes through the point with position vector \(8 \mathbf { i } + 8 \mathbf { j } - 7 \mathbf { k }\) and is parallel to the vector \(4 \mathbf { i } + 3 \mathbf { j }\). The line \(l _ { 2 }\) passes through the point with position vector \(7 \mathbf { i } - 2 \mathbf { j } + 4 \mathbf { k }\) and is parallel to the vector \(4 \mathbf { i } - \mathbf { k }\). The point \(P\) on \(l _ { 1 }\) and the point \(Q\) on \(l _ { 2 }\) are such that \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\). In either order,
  1. show that \(P Q = 13\),
  2. find the position vectors of \(P\) and \(Q\).
CAIE FP1 2011 June Q7
7 The variables \(x\) and \(y\) are related by the differential equation $$y ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 y ^ { 2 } \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } - 5 y ^ { 3 } = 8 \mathrm { e } ^ { - x }$$ Given that \(v = y ^ { 3 }\), show that $$\frac { \mathrm { d } ^ { 2 } v } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} v } { \mathrm {~d} x } - 15 v = 24 \mathrm { e } ^ { - x }$$ Hence find the general solution for \(y\) in terms of \(x\).
CAIE FP1 2011 June Q8
8 Find the eigenvalues and corresponding eigenvectors of the matrix \(\mathbf { A } = \left( \begin{array} { r r r } 4 & - 1 & 1
- 1 & 0 & - 3
1 & - 3 & 0 \end{array} \right)\). Find a non-singular matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } ^ { 5 } = \mathbf { P D P } ^ { - 1 }\).
CAIE FP1 2011 June Q9
9 The curve \(C\) has equation \(y = x ^ { \frac { 3 } { 2 } }\). Find the coordinates of the centroid of the region bounded by \(C\), the lines \(x = 1 , x = 4\) and the \(x\)-axis. Show that the length of the arc of \(C\) from the point where \(x = 5\) to the point where \(x = 28\) is 139 .
CAIE FP1 2011 June Q10
10 Let $$I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \cos ^ { n } x \mathrm {~d} x$$ where \(n \geqslant 0\). Show that, for all \(n \geqslant 2\), $$I _ { n } = \frac { n - 1 } { n } I _ { n - 2 }$$ A curve has parametric equations \(x = a \sin ^ { 3 } t\) and \(y = a \cos ^ { 3 } t\), where \(a\) is a constant and \(0 \leqslant t \leqslant \frac { 1 } { 2 } \pi\). Show that the mean value \(m\) of \(y\) over the interval \(0 \leqslant x \leqslant a\) is given by $$m = 3 a \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \left( \cos ^ { 4 } t - \cos ^ { 6 } t \right) \mathrm { d } t$$ Find the exact value of \(m\), in terms of \(a\).
CAIE FP1 2011 June Q11 EITHER
Use de Moivre's theorem to prove that $$\tan 3 \theta = \frac { 3 \tan \theta - \tan ^ { 3 } \theta } { 1 - 3 \tan ^ { 2 } \theta }$$ State the exact values of \(\theta\), between 0 and \(\pi\), that satisfy \(\tan 3 \theta = 1\). Express each root of the equation \(t ^ { 3 } - 3 t ^ { 2 } - 3 t + 1 = 0\) in the form \(\tan ( k \pi )\), where \(k\) is a positive rational number. For each of these values of \(k\), find the exact value of \(\tan ( k \pi )\).
CAIE FP1 2011 June Q11 OR
The curve \(C\) has equation $$y = \frac { x ^ { 2 } + \lambda x - 6 \lambda ^ { 2 } } { x + 3 }$$ where \(\lambda\) is a constant such that \(\lambda \neq 1\) and \(\lambda \neq - \frac { 3 } { 2 }\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and deduce that if \(C\) has two stationary points then \(- \frac { 3 } { 2 } < \lambda < 1\).
  2. Find the equations of the asymptotes of \(C\).
  3. Draw a sketch of \(C\) for the case \(0 < \lambda < 1\).
  4. Draw a sketch of \(C\) for the case \(\lambda > 3\).
CAIE FP1 2011 June Q1
1 Find \(2 ^ { 2 } + 4 ^ { 2 } + \ldots + ( 2 n ) ^ { 2 }\). Hence find \(1 ^ { 2 } - 2 ^ { 2 } + 3 ^ { 2 } - 4 ^ { 2 } + \ldots - ( 2 n ) ^ { 2 }\), simplifying your answer.
CAIE FP1 2011 June Q2
2 Let \(\mathbf { A } = \left( \begin{array} { l l } 2 & 3
0 & 1 \end{array} \right)\). Prove by mathematical induction that, for every positive integer \(n\), $$\mathbf { A } ^ { n } = \left( \begin{array} { c c } 2 ^ { n } & 3 \left( 2 ^ { n } - 1 \right)
0 & 1 \end{array} \right)$$
CAIE FP1 2011 June Q3
3 Find a cubic equation with roots \(\alpha , \beta\) and \(\gamma\), given that $$\alpha + \beta + \gamma = - 6 , \quad \alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } = 38 , \quad \alpha \beta \gamma = 30 .$$ Hence find the numerical values of the roots.
CAIE FP1 2011 June Q4
4 The curve \(C\) has equation $$2 x y ^ { 2 } + 3 x ^ { 2 } y = 1$$ Show that, at the point \(A ( - 1,1 )\) on \(C , \frac { \mathrm {~d} y } { \mathrm {~d} x } = - 4\). Find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at \(A\).
CAIE FP1 2011 June Q5
5 Let $$I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \tan ^ { n } x \mathrm {~d} x$$ where \(n \geqslant 0\). Use the fact that \(\tan ^ { 2 } x = \sec ^ { 2 } x - 1\) to show that, for \(n \geqslant 2\), $$I _ { n } = \frac { 1 } { n - 1 } - I _ { n - 2 }$$ Show that \(I _ { 8 } = \frac { 1 } { 7 } - \frac { 1 } { 5 } + \frac { 1 } { 3 } - 1 + \frac { 1 } { 4 } \pi\).
CAIE FP1 2011 June Q6
6 The curves \(C _ { 1 }\) and \(C _ { 2 }\) have polar equations $$\begin{array} { l l } C _ { 1 } : & r = a
C _ { 2 } : & r = 2 a \cos 2 \theta , \text { for } 0 \leqslant \theta \leqslant \frac { 1 } { 4 } \pi \end{array}$$ where \(a\) is a positive constant. Sketch \(C _ { 1 }\) and \(C _ { 2 }\) on the same diagram. The curves \(C _ { 1 }\) and \(C _ { 2 }\) intersect at the point with polar coordinates ( \(a , \beta\) ). State the value of \(\beta\). Show that the area of the region bounded by the initial line, the arc of \(C _ { 1 }\) from \(\theta = 0\) to \(\theta = \beta\), and the arc of \(C _ { 2 }\) from \(\theta = \beta\) to \(\theta = \frac { 1 } { 4 } \pi\) is $$a ^ { 2 } \left( \frac { 1 } { 6 } \pi - \frac { 1 } { 8 } \sqrt { } 3 \right)$$
CAIE FP1 2011 June Q7
7 A curve \(C\) has parametric equations \(x = \mathrm { e } ^ { t } \cos t , y = \mathrm { e } ^ { t } \sin t\), for \(0 \leqslant t \leqslant \pi\). Find the arc length of \(C\). Find the area of the surface generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
CAIE FP1 2011 June Q8
8 Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 2 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 5 x = 10 \sin t$$ Find the particular solution, given that \(x = 5\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 2\) when \(t = 0\). State an approximate solution for large positive values of \(t\).
CAIE FP1 2011 June Q9
9 The curve \(C\) with equation $$y = \frac { a x ^ { 2 } + b x + c } { x - 1 }$$ where \(a , b\) and \(c\) are constants, has two asymptotes. It is given that \(y = 2 x - 5\) is one of these asymptotes.
  1. State the equation of the other asymptote.
  2. Find the value of \(a\) and show that \(b = - 7\).
  3. Given also that \(C\) has a turning point when \(x = 2\), find the value of \(c\).
  4. Find the set of values of \(k\) for which the line \(y = k\) does not intersect \(C\).
CAIE FP1 2011 June Q10
10 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations $$l _ { 1 } : \mathbf { r } = 6 \mathbf { i } + 5 \mathbf { j } + 4 \mathbf { k } + \lambda ( \mathbf { i } + \mathbf { j } + \mathbf { k } ) \quad \text { and } \quad l _ { 2 } : \mathbf { r } = 6 \mathbf { i } + 5 \mathbf { j } + 4 \mathbf { k } + \mu ( 4 \mathbf { i } + 6 \mathbf { j } + \mathbf { k } ) .$$ Find a cartesian equation of the plane \(\Pi\) containing \(l _ { 1 }\) and \(l _ { 2 }\). Find the position vector of the foot of the perpendicular from the point with position vector \(\mathbf { i } + 10 \mathbf { j } + 3 \mathbf { k }\) to \(\Pi\). The line \(l _ { 3 }\) has equation \(\mathbf { r } = \mathbf { i } + 10 \mathbf { j } + 3 \mathbf { k } + v ( 2 \mathbf { i } - 3 \mathbf { j } + \mathbf { k } )\). Find the shortest distance between \(l _ { 1 }\) and \(l _ { 3 }\).
CAIE FP1 2011 June Q11 EITHER
A \(3 \times 3\) matrix \(\mathbf { A }\) has eigenvalues \(- 1,1,2\), with corresponding eigenvectors $$\left( \begin{array} { r } 0
1
- 1 \end{array} \right) , \quad \left( \begin{array} { r } - 1
0
1 \end{array} \right) , \quad \left( \begin{array} { l } 1
1
0 \end{array} \right) ,$$ respectively. Find
  1. the matrix \(\mathbf { A }\),
  2. \(\mathbf { A } ^ { 2 n }\), where \(n\) is a positive integer.
CAIE FP1 2011 June Q11 OR
Determine the rank of the matrix $$\mathbf { A } = \left( \begin{array} { l l l l } 1 & - 1 & - 1 & 1
2 & - 1 & - 4 & 3
3 & - 3 & - 2 & 2
5 & - 4 & - 6 & 5 \end{array} \right)$$ Show that if $$\mathbf { A x } = p \left( \begin{array} { l } 1
2
3
5 \end{array} \right) + q \left( \begin{array} { l } - 1
- 1
- 3
- 4 \end{array} \right) + r \left( \begin{array} { l } - 1
- 4
- 2
- 6 \end{array} \right)$$ where \(p , q\) and \(r\) are given real numbers, then $$\mathbf { x } = \left( \begin{array} { c } p + \lambda
q + \lambda
r + \lambda
\lambda \end{array} \right) ,$$ where \(\lambda\) is real. Find the values of \(p , q\) and \(r\) such that $$p \left( \begin{array} { l } 1
2
3
5 \end{array} \right) + q \left( \begin{array} { l } - 1
- 1
- 3
- 4 \end{array} \right) + r \left( \begin{array} { l } - 1
- 4
- 2
- 6 \end{array} \right) = \left( \begin{array} { r } 3
7
8