CAIE FP1 2011 June — Question 5

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2011
SessionJune
TopicReduction Formulae

5 Let $$I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \tan ^ { n } x \mathrm {~d} x$$ where \(n \geqslant 0\). Use the fact that \(\tan ^ { 2 } x = \sec ^ { 2 } x - 1\) to show that, for \(n \geqslant 2\), $$I _ { n } = \frac { 1 } { n - 1 } - I _ { n - 2 }$$ Show that \(I _ { 8 } = \frac { 1 } { 7 } - \frac { 1 } { 5 } + \frac { 1 } { 3 } - 1 + \frac { 1 } { 4 } \pi\).