CAIE FP1 2011 June — Question 2

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2011
SessionJune
TopicProof by induction

2 Let \(\mathbf { A } = \left( \begin{array} { l l } 2 & 3
0 & 1 \end{array} \right)\). Prove by mathematical induction that, for every positive integer \(n\), $$\mathbf { A } ^ { n } = \left( \begin{array} { c c } 2 ^ { n } & 3 \left( 2 ^ { n } - 1 \right)
0 & 1 \end{array} \right)$$