| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2011 |
| Session | June |
| Topic | Vectors: Lines & Planes |
10 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations
$$l _ { 1 } : \mathbf { r } = 6 \mathbf { i } + 5 \mathbf { j } + 4 \mathbf { k } + \lambda ( \mathbf { i } + \mathbf { j } + \mathbf { k } ) \quad \text { and } \quad l _ { 2 } : \mathbf { r } = 6 \mathbf { i } + 5 \mathbf { j } + 4 \mathbf { k } + \mu ( 4 \mathbf { i } + 6 \mathbf { j } + \mathbf { k } ) .$$
Find a cartesian equation of the plane \(\Pi\) containing \(l _ { 1 }\) and \(l _ { 2 }\).
Find the position vector of the foot of the perpendicular from the point with position vector \(\mathbf { i } + 10 \mathbf { j } + 3 \mathbf { k }\) to \(\Pi\).
The line \(l _ { 3 }\) has equation \(\mathbf { r } = \mathbf { i } + 10 \mathbf { j } + 3 \mathbf { k } + v ( 2 \mathbf { i } - 3 \mathbf { j } + \mathbf { k } )\). Find the shortest distance between \(l _ { 1 }\) and \(l _ { 3 }\).