CAIE FP1 2011 June — Question 10

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2011
SessionJune
TopicVectors: Lines & Planes

10 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations $$l _ { 1 } : \mathbf { r } = 6 \mathbf { i } + 5 \mathbf { j } + 4 \mathbf { k } + \lambda ( \mathbf { i } + \mathbf { j } + \mathbf { k } ) \quad \text { and } \quad l _ { 2 } : \mathbf { r } = 6 \mathbf { i } + 5 \mathbf { j } + 4 \mathbf { k } + \mu ( 4 \mathbf { i } + 6 \mathbf { j } + \mathbf { k } ) .$$ Find a cartesian equation of the plane \(\Pi\) containing \(l _ { 1 }\) and \(l _ { 2 }\). Find the position vector of the foot of the perpendicular from the point with position vector \(\mathbf { i } + 10 \mathbf { j } + 3 \mathbf { k }\) to \(\Pi\). The line \(l _ { 3 }\) has equation \(\mathbf { r } = \mathbf { i } + 10 \mathbf { j } + 3 \mathbf { k } + v ( 2 \mathbf { i } - 3 \mathbf { j } + \mathbf { k } )\). Find the shortest distance between \(l _ { 1 }\) and \(l _ { 3 }\).