| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2011 |
| Session | June |
| Topic | 3x3 Matrices |
Determine the rank of the matrix
$$\mathbf { A } = \left( \begin{array} { l l l l }
1 & - 1 & - 1 & 1
2 & - 1 & - 4 & 3
3 & - 3 & - 2 & 2
5 & - 4 & - 6 & 5
\end{array} \right)$$
Show that if
$$\mathbf { A x } = p \left( \begin{array} { l }
1
2
3
5
\end{array} \right) + q \left( \begin{array} { l }
- 1
- 1
- 3
- 4
\end{array} \right) + r \left( \begin{array} { l }
- 1
- 4
- 2
- 6
\end{array} \right)$$
where \(p , q\) and \(r\) are given real numbers, then
$$\mathbf { x } = \left( \begin{array} { c }
p + \lambda
q + \lambda
r + \lambda
\lambda
\end{array} \right) ,$$
where \(\lambda\) is real.
Find the values of \(p , q\) and \(r\) such that
$$p \left( \begin{array} { l }
1
2
3
5
\end{array} \right) + q \left( \begin{array} { l }
- 1
- 1
- 3
- 4
\end{array} \right) + r \left( \begin{array} { l }
- 1
- 4
- 2
- 6
\end{array} \right) = \left( \begin{array} { r }
3
7
8