| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2011 |
| Session | June |
| Topic | Polar coordinates |
6 The curves \(C _ { 1 }\) and \(C _ { 2 }\) have polar equations
$$\begin{array} { l l }
C _ { 1 } : & r = a
C _ { 2 } : & r = 2 a \cos 2 \theta , \text { for } 0 \leqslant \theta \leqslant \frac { 1 } { 4 } \pi
\end{array}$$
where \(a\) is a positive constant. Sketch \(C _ { 1 }\) and \(C _ { 2 }\) on the same diagram.
The curves \(C _ { 1 }\) and \(C _ { 2 }\) intersect at the point with polar coordinates ( \(a , \beta\) ). State the value of \(\beta\).
Show that the area of the region bounded by the initial line, the arc of \(C _ { 1 }\) from \(\theta = 0\) to \(\theta = \beta\), and the arc of \(C _ { 2 }\) from \(\theta = \beta\) to \(\theta = \frac { 1 } { 4 } \pi\) is
$$a ^ { 2 } \left( \frac { 1 } { 6 } \pi - \frac { 1 } { 8 } \sqrt { } 3 \right)$$