Questions — AQA (3548 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
AQA FP1 2005 June Q1
6 marks Easy -1.2
1 The matrices \(\mathbf { A }\) and \(\mathbf { B }\) are defined by $$\mathbf { A } = \left[ \begin{array} { l l } 3 & 4 \\ 4 & 3 \end{array} \right] \quad \mathbf { B } = \left[ \begin{array} { l l } 0 & 2 \\ 2 & 0 \end{array} \right]$$
  1. Calculate the matrices:
    1. \(\mathbf { A } + \mathbf { B }\);
    2. \(\mathbf { A B }\).
  2. Show that \(\mathbf { A } + \mathbf { B } - \mathbf { A B } = k \mathbf { I }\), where \(k\) is an integer and \(\mathbf { I }\) is the \(2 \times 2\) identity matrix.
    (2 marks)
AQA FP1 2005 June Q2
6 marks Moderate -0.3
2 A curve satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \sin 2 x$$ where the angle \(2 x\) is measured in radians.
Starting at the point \(( 0.5,1 )\) on the curve, use a step-by-step method with a step length of 0.1 to estimate the value of \(y\) at \(x = 0.7\). Give your answer to three significant figures.
(6 marks)
AQA FP1 2005 June Q3
7 marks Standard +0.3
3
  1. Use the formulae $$\begin{gathered} \sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { 1 } { 6 } n ( n + 1 ) ( 2 n + 1 ) \\ \sum _ { r = 1 } ^ { n } r ^ { 3 } = \frac { 1 } { 4 } n ^ { 2 } ( n + 1 ) ^ { 2 } \end{gathered}$$ and $$\sum _ { r = 1 } ^ { n } r ^ { 2 } ( r - 1 ) = \frac { 1 } { 12 } n \left( n ^ { 2 } - 1 \right) ( 3 n + 2 )$$ (4 marks)
  2. Use the result from part (a) to find the value of $$\sum _ { r = 4 } ^ { 11 } r ^ { 2 } ( r - 1 )$$ (3 marks)
AQA FP1 2005 June Q4
7 marks Moderate -0.8
4 The function f is defined for all real values of \(x\) by $$\mathrm { f } ( x ) = x ^ { 3 } + x$$
  1. Express \(\mathrm { f } ( 2 + h ) - \mathrm { f } ( 2 )\) in the form $$p h + q h ^ { 2 } + r h ^ { 3 }$$ where \(p , q\) and \(r\) are integers.
  2. Use your answer to part (a) to find the value of \(\mathrm { f } ^ { \prime } ( 2 )\).
AQA FP1 2005 June Q5
7 marks Moderate -0.3
5 Find the general solutions of the following equations, giving your answers in terms of \(\pi\) :
  1. \(\quad \tan 3 x = \sqrt { 3 }\);
  2. \(\quad \tan \left( 3 x - \frac { \pi } { 3 } \right) = - \sqrt { 3 }\).
AQA FP1 2005 June Q6
11 marks Standard +0.3
6 The equation $$x ^ { 2 } - 4 x + 13 = 0$$ has roots \(\alpha\) and \(\beta\).
    1. Write down the values of \(\alpha + \beta\) and \(\alpha \beta\).
    2. Deduce that \(\alpha ^ { 2 } + \beta ^ { 2 } = - 10\).
    3. Explain why the statement \(\alpha ^ { 2 } + \beta ^ { 2 } = - 10\) implies that \(\alpha\) and \(\beta\) cannot both be real.
  1. Find in the form \(p + \mathrm { i } q\) the values of:
    1. \(( \alpha + \mathrm { i } ) + ( \beta + \mathrm { i } )\);
    2. \(( \alpha + \mathrm { i } ) ( \beta + \mathrm { i } )\).
  2. Hence find a quadratic equation with roots \(( \alpha + \mathrm { i } )\) and \(( \beta + \mathrm { i } )\).
AQA FP1 2005 June Q7
11 marks Standard +0.3
7 [Figure 1, printed on the insert, is provided for use in this question.]
The diagram shows a triangle with vertices \(A ( 1,1 ) , B ( 3,1 )\) and \(C ( 3,2 )\). \includegraphics[max width=\textwidth, alt={}, center]{5bfb4d19-8772-43d7-b667-bd124d2504a8-04_1114_1141_552_360}
  1. The triangle \(D E F\) is obtained by applying to triangle \(A B C\) the transformation T represented by the matrix $$\left[ \begin{array} { r r } 2 & 2 \\ - 2 & 2 \end{array} \right]$$
    1. Calculate the coordinates of \(D , E\) and \(F\).
    2. Draw the triangle \(D E F\) on Figure 1.
  2. Given that T is a combination of an enlargement and a rotation, find the exact value of:
    1. the scale factor of the enlargement;
    2. the magnitude of the angle of the rotation.
AQA FP1 2005 June Q8
8 marks Standard +0.3
8 The diagram shows a part of the curve $$\frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 6 } = 1$$ and a chord \(P Q\) of the curve, where \(P\) lies on the \(x\)-axis. \includegraphics[max width=\textwidth, alt={}, center]{5bfb4d19-8772-43d7-b667-bd124d2504a8-05_751_1072_680_459}
  1. Write down the coordinates of \(P\).
  2. The gradient of the chord \(P Q\) is 2 . Find the coordinates of \(Q\).
AQA FP1 2005 June Q9
13 marks Standard +0.3
9 The function f is defined by $$f ( x ) = \frac { x ^ { 2 } + 4 x } { x ^ { 2 } + 9 }$$
    1. The graph of \(y = \mathrm { f } ( x )\) has an asymptote which is parallel to the \(x\)-axis. Find the equation of this asymptote.
    2. Explain why the graph of \(y = \mathrm { f } ( x )\) has no asymptotes parallel to the \(y\)-axis.
  1. Show that the equation \(\mathrm { f } ( x ) = k\) has two equal roots if \(9 k ^ { 2 } - 9 k - 4 = 0\).
  2. Hence find the coordinates of the two stationary points on the graph of \(y = \mathrm { f } ( x )\).
    SurnameOther Names
    Centre NumberCandidate Number
    Candidate Signature
    General Certificate of Education
    June 2005
    Advanced Subsidiary Examination MATHEMATICS
    MFP1
    Unit Further Pure 1 ASSESSMENT and
    QUALIFICATIONS
    ALLIANCE Wednesday 22 June 2005 Afternoon Session Insert for use in Question 7.
    Fill in the boxes at the top of this page.
    Fasten this insert securely to your answer book.
AQA FP1 2006 June Q1
9 marks Standard +0.3
1 The quadratic equation $$3 x ^ { 2 } - 6 x + 2 = 0$$ has roots \(\alpha\) and \(\beta\).
  1. Write down the numerical values of \(\alpha + \beta\) and \(\alpha \beta\).
    1. Expand \(( \alpha + \beta ) ^ { 3 }\).
    2. Show that \(\alpha ^ { 3 } + \beta ^ { 3 } = 4\).
  2. Find a quadratic equation with roots \(\alpha ^ { 3 }\) and \(\beta ^ { 3 }\), giving your answer in the form \(p x ^ { 2 } + q x + r = 0\), where \(p , q\) and \(r\) are integers.
AQA FP1 2006 June Q2
6 marks Moderate -0.3
2 A curve satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \log _ { 10 } x$$ Starting at the point \(( 2,3 )\) on the curve, use a step-by-step method with a step length of 0.2 to estimate the value of \(y\) at \(x = 2.4\). Give your answer to three decimal places.
AQA FP1 2006 June Q3
4 marks Moderate -0.8
3 Show that $$\sum _ { r = 1 } ^ { n } \left( r ^ { 2 } - r \right) = k n ( n + 1 ) ( n - 1 )$$ where \(k\) is a rational number.
AQA FP1 2006 June Q4
5 marks Moderate -0.5
4 Find, in radians, the general solution of the equation $$\cos 3 x = \frac { \sqrt { 3 } } { 2 }$$ giving your answers in terms of \(\pi\).
AQA FP1 2006 June Q5
9 marks Moderate -0.3
5 The matrix \(\mathbf { M }\) is defined by $$\mathbf { M } = \left[ \begin{array} { c c } \frac { 1 } { \sqrt { 2 } } & \frac { 1 } { \sqrt { 2 } } \\ - \frac { 1 } { \sqrt { 2 } } & \frac { 1 } { \sqrt { 2 } } \end{array} \right]$$
  1. Find the matrix:
    1. \(\mathbf { M } ^ { 2 }\);
    2. \(\mathbf { M } ^ { 4 }\).
  2. Describe fully the geometrical transformation represented by \(\mathbf { M }\).
  3. Find the matrix \(\mathbf { M } ^ { 2006 }\).
AQA FP1 2006 June Q6
7 marks Moderate -0.3
6 It is given that \(z = x + \mathrm { i } y\), where \(x\) and \(y\) are real numbers.
  1. Write down, in terms of \(x\) and \(y\), an expression for $$( z + \mathrm { i } ) ^ { * }$$ where \(( z + \mathrm { i } ) ^ { * }\) denotes the complex conjugate of \(( z + \mathrm { i } )\).
  2. Solve the equation $$( z + \mathrm { i } ) ^ { * } = 2 \mathrm { i } z + 1$$ giving your answer in the form \(a + b \mathrm { i }\).
AQA FP1 2006 June Q7
6 marks Standard +0.3
7
  1. Describe a geometrical transformation by which the hyperbola $$x ^ { 2 } - 4 y ^ { 2 } = 1$$ can be obtained from the hyperbola \(x ^ { 2 } - y ^ { 2 } = 1\).
  2. The diagram shows the hyperbola \(H\) with equation $$x ^ { 2 } - y ^ { 2 } - 4 x + 3 = 0$$
    \includegraphics[max width=\textwidth, alt={}]{e44987a7-2cdf-442a-aecb-abd3e889ecd4-4_951_1216_824_402}
    By completing the square, describe a geometrical transformation by which the hyperbola \(H\) can be obtained from the hyperbola \(x ^ { 2 } - y ^ { 2 } = 1\).
AQA FP1 2006 June Q8
10 marks Standard +0.3
8
  1. The function f is defined for all real values of \(x\) by $$\mathrm { f } ( x ) = x ^ { 3 } + x ^ { 2 } - 1$$
    1. Express \(\mathrm { f } ( 1 + h ) - \mathrm { f } ( 1 )\) in the form $$p h + q h ^ { 2 } + r h ^ { 3 }$$ where \(p , q\) and \(r\) are integers.
    2. Use your answer to part (a)(i) to find the value of \(f ^ { \prime } ( 1 )\).
  2. The diagram shows the graphs of $$y = \frac { 1 } { x ^ { 2 } } \quad \text { and } \quad y = x + 1 \quad \text { for } \quad x > 0$$
    \includegraphics[max width=\textwidth, alt={}]{e44987a7-2cdf-442a-aecb-abd3e889ecd4-5_643_791_1160_596}
    The graphs intersect at the point \(P\).
    1. Show that the \(x\)-coordinate of \(P\) satisfies the equation \(\mathrm { f } ( x ) = 0\), where f is the function defined in part (a).
    2. Taking \(x _ { 1 } = 1\) as a first approximation to the root of the equation \(\mathrm { f } ( x ) = 0\), use the Newton-Raphson method to find a second approximation \(x _ { 2 }\) to the root.
      (3 marks)
  3. The region enclosed by the curve \(y = \frac { 1 } { x ^ { 2 } }\), the line \(x = 1\) and the \(x\)-axis is shaded on the diagram. By evaluating an improper integral, find the area of this region.
    (3 marks)
AQA FP1 2006 June Q9
16 marks Standard +0.8
9 A curve \(C\) has equation $$y = \frac { ( x + 1 ) ( x - 3 ) } { x ( x - 2 ) }$$
    1. Write down the coordinates of the points where \(C\) intersects the \(x\)-axis. (2 marks)
    2. Write down the equations of all the asymptotes of \(C\).
    1. Show that, if the line \(y = k\) intersects \(C\), then $$( k - 1 ) ( k - 4 ) \geqslant 0$$
    2. Given that there is only one stationary point on \(C\), find the coordinates of this stationary point.
      (No credit will be given for solutions based on differentiation.)
  1. Sketch the curve \(C\).
AQA FP2 2006 January Q1
6 marks Standard +0.3
1
  1. Show that $$\frac { 1 } { r ^ { 2 } } - \frac { 1 } { ( r + 1 ) ^ { 2 } } = \frac { 2 r + 1 } { r ^ { 2 } ( r + 1 ) ^ { 2 } }$$
  2. Hence find the sum of the first \(n\) terms of the series $$\frac { 3 } { 1 ^ { 2 } \times 2 ^ { 2 } } + \frac { 5 } { 2 ^ { 2 } \times 3 ^ { 2 } } + \frac { 7 } { 3 ^ { 2 } \times 4 ^ { 2 } } + \ldots$$
AQA FP2 2006 January Q2
10 marks Standard +0.3
2 The cubic equation $$x ^ { 3 } + p x ^ { 2 } + q x + r = 0$$ where \(p , q\) and \(r\) are real, has roots \(\alpha , \beta\) and \(\gamma\).
  1. Given that $$\alpha + \beta + \gamma = 4 \quad \text { and } \quad \alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } = 20$$ find the values of \(p\) and \(q\).
  2. Given further that one root is \(3 + \mathrm { i }\), find the value of \(r\).
AQA FP2 2006 January Q3
12 marks Moderate -0.3
3 The complex numbers \(z _ { 1 }\) and \(z _ { 2 }\) are given by $$z _ { 1 } = \frac { 1 + \mathrm { i } } { 1 - \mathrm { i } } \quad \text { and } \quad z _ { 2 } = \frac { 1 } { 2 } + \frac { \sqrt { 3 } } { 2 } \mathrm { i }$$
  1. Show that \(z _ { 1 } = \mathrm { i }\).
  2. Show that \(\left| z _ { 1 } \right| = \left| z _ { 2 } \right|\).
  3. Express both \(z _ { 1 }\) and \(z _ { 2 }\) in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\).
  4. Draw an Argand diagram to show the points representing \(z _ { 1 } , z _ { 2 }\) and \(z _ { 1 } + z _ { 2 }\).
  5. Use your Argand diagram to show that $$\tan \frac { 5 } { 12 } \pi = 2 + \sqrt { 3 }$$
AQA FP2 2006 January Q4
9 marks Challenging +1.2
4
  1. Prove by induction that $$2 + ( 3 \times 2 ) + \left( 4 \times 2 ^ { 2 } \right) + \ldots + ( n + 1 ) 2 ^ { n - 1 } = n 2 ^ { n }$$ for all integers \(n \geqslant 1\).
  2. Show that $$\sum _ { r = n + 1 } ^ { 2 n } ( r + 1 ) 2 ^ { r - 1 } = n 2 ^ { n } \left( 2 ^ { n + 1 } - 1 \right)$$
AQA FP2 2006 January Q5
9 marks Standard +0.8
5 The complex number \(z\) satisfies the relation $$| z + 4 - 4 i | = 4$$
  1. Sketch, on an Argand diagram, the locus of \(z\).
  2. Show that the greatest value of \(| z |\) is \(4 ( \sqrt { 2 } + 1 )\).
  3. Find the value of \(z\) for which $$\arg ( z + 4 - 4 \mathrm { i } ) = \frac { 1 } { 6 } \pi$$ Give your answer in the form \(a + \mathrm { i } b\).
AQA FP2 2006 January Q6
12 marks Challenging +1.2
6 It is given that \(z = \mathrm { e } ^ { \mathrm { i } \theta }\).
    1. Show that $$z + \frac { 1 } { z } = 2 \cos \theta$$ (2 marks)
    2. Find a similar expression for $$z ^ { 2 } + \frac { 1 } { z ^ { 2 } }$$ (2 marks)
    3. Hence show that $$z ^ { 2 } - z + 2 - \frac { 1 } { z } + \frac { 1 } { z ^ { 2 } } = 4 \cos ^ { 2 } \theta - 2 \cos \theta$$ (3 marks)
  1. Hence solve the quartic equation $$z ^ { 4 } - z ^ { 3 } + 2 z ^ { 2 } - z + 1 = 0$$ giving the roots in the form \(a + \mathrm { i } b\).
AQA FP2 2006 January Q7
17 marks Challenging +1.2
7
  1. Use the definitions $$\sinh \theta = \frac { 1 } { 2 } \left( \mathrm { e } ^ { \theta } - \mathrm { e } ^ { - \theta } \right) \quad \text { and } \quad \cosh \theta = \frac { 1 } { 2 } \left( \mathrm { e } ^ { \theta } + \mathrm { e } ^ { - \theta } \right)$$ to show that:
    1. \(2 \sinh \theta \cosh \theta = \sinh 2 \theta\);
    2. \(\cosh ^ { 2 } \theta + \sinh ^ { 2 } \theta = \cosh 2 \theta\).
  2. A curve is given parametrically by $$x = \cosh ^ { 3 } \theta , \quad y = \sinh ^ { 3 } \theta$$
    1. Show that $$\left( \frac { \mathrm { d } x } { \mathrm {~d} \theta } \right) ^ { 2 } + \left( \frac { \mathrm { d } y } { \mathrm {~d} \theta } \right) ^ { 2 } = \frac { 9 } { 4 } \sinh ^ { 2 } 2 \theta \cosh 2 \theta$$
    2. Show that the length of the arc of the curve from the point where \(\theta = 0\) to the point where \(\theta = 1\) is $$\frac { 1 } { 2 } \left[ ( \cosh 2 ) ^ { \frac { 3 } { 2 } } - 1 \right]$$