AQA FP1 2005 June — Question 6

Exam BoardAQA
ModuleFP1 (Further Pure Mathematics 1)
Year2005
SessionJune
TopicRoots of polynomials

6 The equation $$x ^ { 2 } - 4 x + 13 = 0$$ has roots \(\alpha\) and \(\beta\).
    1. Write down the values of \(\alpha + \beta\) and \(\alpha \beta\).
    2. Deduce that \(\alpha ^ { 2 } + \beta ^ { 2 } = - 10\).
    3. Explain why the statement \(\alpha ^ { 2 } + \beta ^ { 2 } = - 10\) implies that \(\alpha\) and \(\beta\) cannot both be real.
  1. Find in the form \(p + \mathrm { i } q\) the values of:
    1. \(( \alpha + \mathrm { i } ) + ( \beta + \mathrm { i } )\);
    2. \(( \alpha + \mathrm { i } ) ( \beta + \mathrm { i } )\).
  2. Hence find a quadratic equation with roots \(( \alpha + \mathrm { i } )\) and \(( \beta + \mathrm { i } )\).