AQA FP1 2006 June — Question 7

Exam BoardAQA
ModuleFP1 (Further Pure Mathematics 1)
Year2006
SessionJune
TopicConic sections

7
  1. Describe a geometrical transformation by which the hyperbola $$x ^ { 2 } - 4 y ^ { 2 } = 1$$ can be obtained from the hyperbola \(x ^ { 2 } - y ^ { 2 } = 1\).
  2. The diagram shows the hyperbola \(H\) with equation $$x ^ { 2 } - y ^ { 2 } - 4 x + 3 = 0$$
    \includegraphics[max width=\textwidth, alt={}]{e44987a7-2cdf-442a-aecb-abd3e889ecd4-4_951_1216_824_402}
    By completing the square, describe a geometrical transformation by which the hyperbola \(H\) can be obtained from the hyperbola \(x ^ { 2 } - y ^ { 2 } = 1\).