AQA FP1 2005 June — Question 1

Exam BoardAQA
ModuleFP1 (Further Pure Mathematics 1)
Year2005
SessionJune
TopicMatrices

1 The matrices \(\mathbf { A }\) and \(\mathbf { B }\) are defined by $$\mathbf { A } = \left[ \begin{array} { l l } 3 & 4
4 & 3 \end{array} \right] \quad \mathbf { B } = \left[ \begin{array} { l l } 0 & 2
2 & 0 \end{array} \right]$$
  1. Calculate the matrices:
    1. \(\mathbf { A } + \mathbf { B }\);
    2. \(\mathbf { A B }\).
  2. Show that \(\mathbf { A } + \mathbf { B } - \mathbf { A B } = k \mathbf { I }\), where \(k\) is an integer and \(\mathbf { I }\) is the \(2 \times 2\) identity matrix.
    (2 marks)