AQA FP1 2006 June — Question 8

Exam BoardAQA
ModuleFP1 (Further Pure Mathematics 1)
Year2006
SessionJune
TopicNewton-Raphson method
TypeIntersection of curves via iteration

8
  1. The function f is defined for all real values of \(x\) by $$\mathrm { f } ( x ) = x ^ { 3 } + x ^ { 2 } - 1$$
    1. Express \(\mathrm { f } ( 1 + h ) - \mathrm { f } ( 1 )\) in the form $$p h + q h ^ { 2 } + r h ^ { 3 }$$ where \(p , q\) and \(r\) are integers.
    2. Use your answer to part (a)(i) to find the value of \(f ^ { \prime } ( 1 )\).
  2. The diagram shows the graphs of $$y = \frac { 1 } { x ^ { 2 } } \quad \text { and } \quad y = x + 1 \quad \text { for } \quad x > 0$$
    \includegraphics[max width=\textwidth, alt={}]{e44987a7-2cdf-442a-aecb-abd3e889ecd4-5_643_791_1160_596}
    The graphs intersect at the point \(P\).
    1. Show that the \(x\)-coordinate of \(P\) satisfies the equation \(\mathrm { f } ( x ) = 0\), where f is the function defined in part (a).
    2. Taking \(x _ { 1 } = 1\) as a first approximation to the root of the equation \(\mathrm { f } ( x ) = 0\), use the Newton-Raphson method to find a second approximation \(x _ { 2 }\) to the root.
      (3 marks)
  3. The region enclosed by the curve \(y = \frac { 1 } { x ^ { 2 } }\), the line \(x = 1\) and the \(x\)-axis is shaded on the diagram. By evaluating an improper integral, find the area of this region.
    (3 marks)