AQA FP1 2005 June — Question 3

Exam BoardAQA
ModuleFP1 (Further Pure Mathematics 1)
Year2005
SessionJune
TopicSequences and series, recurrence and convergence

3
  1. Use the formulae $$\begin{gathered} \sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { 1 } { 6 } n ( n + 1 ) ( 2 n + 1 )
    \sum _ { r = 1 } ^ { n } r ^ { 3 } = \frac { 1 } { 4 } n ^ { 2 } ( n + 1 ) ^ { 2 } \end{gathered}$$ and $$\sum _ { r = 1 } ^ { n } r ^ { 2 } ( r - 1 ) = \frac { 1 } { 12 } n \left( n ^ { 2 } - 1 \right) ( 3 n + 2 )$$ (4 marks)
  2. Use the result from part (a) to find the value of $$\sum _ { r = 4 } ^ { 11 } r ^ { 2 } ( r - 1 )$$ (3 marks)