A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Sequences and series, recurrence and convergence
Q3
AQA FP1 2005 June — Question 3
Exam Board
AQA
Module
FP1 (Further Pure Mathematics 1)
Year
2005
Session
June
Topic
Sequences and series, recurrence and convergence
3
Use the formulae $$\begin{gathered} \sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { 1 } { 6 } n ( n + 1 ) ( 2 n + 1 )
\sum _ { r = 1 } ^ { n } r ^ { 3 } = \frac { 1 } { 4 } n ^ { 2 } ( n + 1 ) ^ { 2 } \end{gathered}$$ and $$\sum _ { r = 1 } ^ { n } r ^ { 2 } ( r - 1 ) = \frac { 1 } { 12 } n \left( n ^ { 2 } - 1 \right) ( 3 n + 2 )$$ (4 marks)
Use the result from part (a) to find the value of $$\sum _ { r = 4 } ^ { 11 } r ^ { 2 } ( r - 1 )$$ (3 marks)
This paper
(9 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9