2 The curve with equation \(y = \frac { 63 } { 4 x - 1 }\) is sketched below for \(1 \leqslant x \leqslant 16\).
\includegraphics[max width=\textwidth, alt={}, center]{7aa76d26-e3c4-4374-ae4f-8bb61e61b135-2_568_698_1308_669}
The function f is defined by \(\mathrm { f } ( x ) = \frac { 63 } { 4 x - 1 }\) for \(1 \leqslant x \leqslant 16\).
- Find the range of f .
- The inverse of f is \(\mathrm { f } ^ { - 1 }\).
- Find \(\mathrm { f } ^ { - 1 } ( x )\).
- Solve the equation \(\mathrm { f } ^ { - 1 } ( x ) = 1\).
- The function g is defined by \(\mathrm { g } ( x ) = x ^ { 2 }\) for \(- 4 \leqslant x \leqslant - 1\).
- Write down an expression for \(\mathrm { fg } ( x )\).
- Solve the equation \(\operatorname { fg } ( x ) = 1\).