AQA C3 2013 January — Question 1

Exam BoardAQA
ModuleC3 (Core Mathematics 3)
Year2013
SessionJanuary
TopicFixed Point Iteration

1
  1. Show that the equation \(x ^ { 3 } - 6 x + 1 = 0\) has a root \(\alpha\), where \(2 < \alpha < 3\).
  2. Show that the equation \(x ^ { 3 } - 6 x + 1 = 0\) can be rearranged into the form $$x ^ { 2 } = 6 - \frac { 1 } { x }$$ (1 mark)
  3. Use the recurrence relation \(x _ { n + 1 } = \sqrt { 6 - \frac { 1 } { x _ { n } } }\), with \(x _ { 1 } = 2.5\), to find the value of \(x _ { 3 }\), giving your answer to four significant figures.
    (2 marks)
    \includegraphics[max width=\textwidth, alt={}]{b8614dd6-2197-40c3-a673-5bef3e3653a5-2_142_116_2560_157}\(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\)