A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Reciprocal Trig & Identities
Q6
AQA C3 2013 January — Question 6
Exam Board
AQA
Module
C3 (Core Mathematics 3)
Year
2013
Session
January
Topic
Reciprocal Trig & Identities
6
Show that $$\frac { \sec ^ { 2 } x } { ( \sec x + 1 ) ( \sec x - 1 ) }$$ can be written as \(\operatorname { cosec } ^ { 2 } x\).
Hence solve the equation $$\frac { \sec ^ { 2 } x } { ( \sec x + 1 ) ( \sec x - 1 ) } = \operatorname { cosec } x + 3$$ giving the values of \(x\) to the nearest degree in the interval \(- 180 ^ { \circ } < x < 180 ^ { \circ }\).
Hence solve the equation $$\frac { \sec ^ { 2 } \left( 2 \theta - 60 ^ { \circ } \right) } { \left( \sec \left( 2 \theta - 60 ^ { \circ } \right) + 1 \right) \left( \sec \left( 2 \theta - 60 ^ { \circ } \right) - 1 \right) } = \operatorname { cosec } \left( 2 \theta - 60 ^ { \circ } \right) + 3$$ giving the values of \(\theta\) to the nearest degree in the interval \(0 ^ { \circ } < \theta < 90 ^ { \circ }\).
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8