A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Reciprocal Trig & Identities
Q4
AQA C3 2012 January — Question 4
Exam Board
AQA
Module
C3 (Core Mathematics 3)
Year
2012
Session
January
Topic
Reciprocal Trig & Identities
4
By using a suitable trigonometrical identity, solve the equation $$\tan ^ { 2 } \theta = 3 ( 3 - \sec \theta )$$ giving all solutions to the nearest \(0.1 ^ { \circ }\) in the interval \(0 ^ { \circ } < \theta < 360 ^ { \circ }\).
Hence solve the equation $$\tan ^ { 2 } \left( 4 x - 10 ^ { \circ } \right) = 3 \left[ 3 - \sec \left( 4 x - 10 ^ { \circ } \right) \right]$$ giving all solutions to the nearest \(0.1 ^ { \circ }\) in the interval \(0 ^ { \circ } < x < 90 ^ { \circ }\).
This paper
(7 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7