Given that \(x = \frac { 1 } { \sin \theta }\), use the quotient rule to show that \(\frac { \mathrm { d } x } { \mathrm {~d} \theta } = - \operatorname { cosec } \theta \cot \theta\).
(3 marks)
Use the substitution \(x = \operatorname { cosec } \theta\) to find \(\int _ { \sqrt { 2 } } ^ { 2 } \frac { 1 } { x ^ { 2 } \sqrt { x ^ { 2 } - 1 } } \mathrm {~d} x\), giving your answer to three significant figures.
(9 marks)